최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Computer methods in applied mechanics and engineering, v.372, 2020년, pp.113401 -
Jung, Jaeho (Korea Atomic Energy Research Institute) , Yoon, Kyungho (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology) , Lee, Phill-Seung (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology)
Abstract In this paper, we propose a method that employs deep learning, an artificial intelligence technique, to generate stiffness matrices of finite elements. The proposed method is used to develop 4- and 8-node 2D solid finite elements. The deep learned finite elements practically pass the patch...
Bathe 2006 Finite Element Procedures
Jin 2015 The Finite Element Method in Electromagnetics
Gresho 1998 Incompressible Flow and the Finite Element Method. Volume 1: Advection-Diffusion and Isothermal Laminar Flow
Lesaint 1974 On a Finite Element Method for Solving the Neutron Transport Equation
Comput. Methods Appl. Mech. Engrg. Donea 33 689 1982 10.1016/0045-7825(82)90128-1 An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions
Volakis 1998 Finite Element Method Electromagnetics: Antennas, Microwave Circuits, and Scattering Applications
Reddy 2010 The Finite Element Method in Heat Transfer and Fluid Dynamics
Girault 1979 Finite Element Approximation of the Navier-Stokes Equations
Bull. Math. Biophys. McCulloch 5 115 1943 10.1007/BF02478259 A logical calculus of the ideas immanent in nervous activity
Psychol. Rev. Rosenblatt 65 386 1958 10.1037/h0042519 The perceptron: a probabilistic model for information storage and organization in the brain
Neural Comput. Hinton 18 1527 2006 10.1162/neco.2006.18.7.1527 A fast learning algorithm for deep belief nets
Nature Rumelhart 323 533 1986 10.1038/323533a0 Learning representations by back-propagating errors
Krizhevsky 1097 2012 Advances in Neural Information Processing Systems Imagenet classification with deep convolutional neural networks
Nature Silver 529 484 2016 10.1038/nature16961 Mastering the game of Go with deep neural networks and tree search
Nature Silver 550 354 2017 10.1038/nature24270 Mastering the game of Go without human knowledge
J. Comput. Phys. Sirignano 375 1339 2018 10.1016/j.jcp.2018.08.029 DGM: a deep learning algorithm for solving partial differential equations
J. Mach. Learn. Res. Raissi 19 932 2018 Deep hidden physics models: deep learning of nonlinear partial differential equations
J. Comput. Phys. Raissi 378 686 2019 10.1016/j.jcp.2018.10.045 Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
J. Tompson, K. Schlachter, P. Sprechmann, K. Perlin, Accelerating Eulerian fluid simulation with convolutional networks, in: Proceedings of the 34th International Conference on Machine Learning, Vol. 70, 2017, pp. 3424-3433.
Hennigh 2017 Lat-net: compressing lattice Boltzmann flow simulations using deep neural networks
J. Fluid Mech. Ling 807 155 2016 10.1017/jfm.2016.615 Reynolds averaged turbulence modelling using deep neural networks with embedded invariance
Zhang 2460 2015 22nd AIAA Computational Fluid Dynamics Conference Machine learning methods for data-driven turbulence modeling
Beck 2018 Deep neural networks for data-driven turbulence models
Neural Netw. Takeuchi 7 389 1994 10.1016/0893-6080(94)90031-0 Neural network representation of finite element method
J. R. Soc. Interface Liang 15 2018 10.1098/rsif.2017.0844 A deep learning approach to estimate stress distribution: a fast and accurate surrogate of finite-element analysis
Int. J. Adv. Manuf. Technol. Chamekh 44 173 2009 10.1007/s00170-008-1809-6 Inverse technique identification of material parameters using finite element and neural network computation
Internat. J. Numer. Methods Engrg. Hashash 59 989 2004 10.1002/nme.905 Numerical implementation of a neural network based material model in finite element analysis
ACM Trans. Graph. Chen 34 74 2015 10.1145/2766889 Data-driven finite elements for geometry and material design
Comput. Methods Appl. Mech. Engrg. Oishi 327 327 2017 10.1016/j.cma.2017.08.040 Computational mechanics enhanced by deep learning
Zienkiewicz 2000 The Finite Element Method: The Basis
Neural Netw. Hornik 2 359 1989 10.1016/0893-6080(89)90020-8 Multilayer feedforward networks are universal approximators
Neural Comput. Le Roux 22 2192 2010 10.1162/neco.2010.08-09-1081 Deep belief networks are compact universal approximators
Abadi 265 2016 12th USENIX Symposium on Operating Systems Design and Implementation TensorFlow: a system for large-scale machine learning
Kingma 2014 Adam: a method for stochastic optimization
X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward neural networks, in: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, 2010, pp. 249-256.
Roylance 2001 Transformation of Stresses and Strains
Zienkiewicz 1989 The Finite Element Method: Basic Formulation and Linear Problems
Comput. Struct. Ko 169 57 2016 10.1016/j.compstruc.2016.03.002 The MITC4+ shell element and its performance
Comput. Struct. Lee 223 2019 10.1016/j.compstruc.2019.07.005 The strain-smoothed MITC3+ shell element
Internat. J. Numer. Methods Engrg. Taylor 10 1211 1976 10.1002/nme.1620100602 A non-conforming element for stress analysis
Kohnke 1998 ANSYS Theory Reference: Release 5.5
Comput. Struct. Bathe 89 285 2011 10.1016/j.compstruc.2010.09.007 Measuring the convergence behavior of shell analysis schemes
Adv. Eng. Softw. Lee 41 712 2010 10.1016/j.advengsoft.2009.12.011 The quadratic MITC plate and MITC shell elements in plate bending
Comput. Struct. Ko 193 187 2017 10.1016/j.compstruc.2017.08.003 Performance of the MITC3+ and MITC4+ shell elements in widely-used benchmark problems
Cook 2007 Concepts and Applications of Finite Element Analysis
Comput. Sci. Eng. Walt 13 22 2011 10.1109/MCSE.2011.37 The NumPy array: a structure for efficient numerical computation
Comput. Methods Appl. Mech. Engrg. Yoon 281 106 2014 10.1016/j.cma.2014.07.023 Nonlinear performance of continuum mechanics based beam elements focusing on large twisting behaviors
Comput. Struct. Lee 138 12 2014 10.1016/j.compstruc.2014.02.005 The MITC3+ shell finite element and its performance
Comput. Struct. Ko 192 34 2017 10.1016/j.compstruc.2017.07.003 A new 4-node MITC element for analysis of two-dimensional solids and its formulation in a shell element
Comput. Struct. Kim 216 40 2019 10.1016/j.compstruc.2018.12.002 New enriched 3D solid finite elements: 8-node hexahedral, 6-node prismatic, and 5-node pyramidal elements
Comput. Struct. Jeon 146 91 2015 10.1016/j.compstruc.2014.09.004 The MITC3+ shell element in geometric nonlinear analysis
Comput. Struct. Kim 87 1451 2009 10.1016/j.compstruc.2009.05.002 A triangular six-node shell element
Internat. J. Numer. Methods Engrg. Bucalem 36 3729 1993 10.1002/nme.1620362109 Higher-order MITC general shell elements
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.