최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Proceedings of the National Academy of Sciences of the United States of America, v.117 no.41, 2020년, pp.25476 - 25485
Knott, Brandon C. (Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401) , Erickson, Erika , Allen, Mark D. (Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401) , Gado, Japheth E. , Graham, Rosie (Centre for Enzyme Innovation, School of Biological Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DY, United Kingdom) , Kearns, Fiona L. , Pardo, Isabel (Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401) , Topuzlu, Ece , Anderson, Jared J. (Centre for Enzyme Innovation, School of Biological Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DY, United Kingdom) , Austin, Harry P. , Dominick, Graham (Department of Chemistry, University of South Florida, Tampa, FL 33620) , Johnson, Christopher W. , Rorrer, Nicholas A. (Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401) , Szostkiewicz, Caralyn J. , Copié, Valérie (Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401) , Payne, Christina M. , Woodcock, H. Lee (Renewable Resources and Enabling Scienc) , Donohoe, Bryon S. , Beckham, Gregg T. , McGeehan, John E.
SignificanceDeconstruction of recalcitrant polymers, such as cellulose or chitin, is accomplished in nature by synergistic enzyme cocktails that evolved over millions of years. In these systems, soluble dimeric or oligomeric intermediates are typically released via interfacial biocatalysis, and addi...
1 Law K. L. . , Plastic accumulation in the North Atlantic subtropical gyre . Science 329 , 1185 ? 1188 ( 2010 ). 20724586
2 Cozar A. . , Plastic debris in the open ocean . Proc. Natl. Acad. Sci. U.S.A. 111 , 10239 ? 10244 ( 2014 ). 24982135
3 Jambeck J. R. . , Marine pollution. Plastic waste inputs from land into the ocean . Science 347 , 768 ? 771 ( 2015 ). 25678662
4 Lamb J. B. . , Plastic waste associated with disease on coral reefs . Science 359 , 460 ? 462 ( 2018 ). 29371469
5 de Souza Machado A. A. , Kloas W. , Zarfl C. , Hempel S. , Rillig M. C. , Microplastics as an emerging threat to terrestrial ecosystems . Glob. Change Biol. 24 , 1405 ? 1416 ( 2018 ).
6 Allen S. . , Atmospheric transport and deposition of microplastics in a remote mountain catchment . Nat. Geosci. 12 , 679 ( 2019 ).
7 Restrepo-Florez J.-M. , Bassi A. , Thompson M. R. , Microbial degradation and deterioration of polyethylene―A review . Intl. Biodeter. Biodegrad. 88 , 83 ? 90 ( 2014 ).
8 Yang J. , Yang Y. , Wu W.-M. , Zhao J. , Jiang L. , Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms . Environ. Sci. Technol. 48 , 13776 ? 13784 ( 2014 ). 25384056
9 Yang Y. . , Biodegradation and mineralization of polystyrene by plastic-eating mealworms: Part 2. Role of gut microorganisms . Environ. Sci. Technol. 49 , 12087 ? 12093 ( 2015 ). 26390390
10 Yoshida S. . , A bacterium that degrades and assimilates poly(ethylene terephthalate) . Science 351 , 1196 ? 1199 ( 2016 ). 26965627
11 Bombelli P. , Howe C. J. , Bertocchini F. , Polyethylene bio-degradation by caterpillars of the wax moth Galleria mellonella . Curr. Biol. 27 , R292 ? R293 ( 2017 ). 28441558
12 Dvoak P. , Nikel P. I. , Damborsky J. , de Lorenzo V. , Bioremediation 3.0: Engineering pollutant-removing bacteria in the times of systemic biology . Biotechnol. Adv. 35 , 845 ? 866 ( 2017 ). 28789939
13 Wierckx N. . , Plastic waste as a novel substrate for industrial biotechnology . Microb. Biotechnol. 8 , 900 ? 903 ( 2015 ). 26482561
14 Wei R. , Zimmermann W. , Biocatalysis as a green route for recycling the recalcitrant plastic polyethylene terephthalate . Microb. Biotechnol. 10 , 1302 ? 1307 ( 2017 ). 28401691
15 Wei R. , Zimmermann W. , Microbial enzymes for the recycling of recalcitrant petroleum-based plastics: How far are we? Microb. Biotechnol. 10 , 1308 ? 1322 ( 2017 ). 28371373
16 Taniguchi I. . , Biodegradation of PET: Current status and application aspects . ACS Catal. 9 , 4089 ? 4105 ( 2019 ).
17 Araujo R. . , Tailoring cutinase activity towards polyethylene terephthalate and polyamide 6,6 fibers . J. Biotechnol. 128 , 849 ? 857 ( 2007 ). 17306400
18 Ronkvist A. M. , Xie W. , Lu W. , Gross R. A. , Cutinase-catalyzed hydrolysis of poly (ethylene terephthalate) . Macromolecules 42 , 5128 ? 5138 ( 2009 ).
19 Herrero Acero E. . , Enzymatic surface hydrolysis of PET: Effect of structural diversity on kinetic properties of cutinases from Thermobifida . Macromolecules 44 , 4632 ? 4640 ( 2011 ).
20 Ribitsch D. . , Characterization of a new cutinase from Thermobifida alba for PET-surface hydrolysis . Biocat. Biotrans. 30 , 2 ? 9 ( 2012 ).
21 Sulaiman S. . , Isolation of a novel cutinase homolog with polyethylene terephthalate-degrading activity from leaf-branch compost by using a metagenomic approach . Appl. Environ. Microbiol. 78 , 1556 ? 1562 ( 2012 ). 22194294
22 Ribitsch D. . , Fusion of binding domains to Thermobifida cellulosilytica cutinase to tune sorption characteristics and enhancing PET hydrolysis . Biomacromolecules 14 , 1769 ? 1776 ( 2013 ). 23718548
23 Roth C. . , Structural and functional studies on a thermostable polyethylene terephthalate degrading hydrolase from Thermobifida fusca . Appl. Microbiol. Biotechnol. 98 , 7815 ? 7823 ( 2014 ). 24728714
24 Ribitsch D. . , Enhanced cutinase-catalyzed hydrolysis of polyethylene terephthalate by covalent fusion to hydrophobins . Appl. Environ. Microbiol. 81 , 3586 ? 3592 ( 2015 ). 25795674
25 de Castro A. M. , Carniel A. , Nicomedes Junior J. , da Conceicao Gomes A. , Valoni E. , Screening of commercial enzymes for poly(ethylene terephthalate) (PET) hydrolysis and synergy studies on different substrate sources . J. Ind. Microbiol. Biotechnol. 44 , 835 ? 844 ( 2017 ). 28424881
26 Danso D. . , New insights into the function and global distribution of polyethylene terephthalate (PET)-degrading bacteria and enzymes in marine and terrestrial metagenomes . Appl. Environ. Microbiol. 84 , e02773 - 17 ( 2018 ). 29427431
27 Han X. . , Structural insight into catalytic mechanism of PET hydrolase . Nat. Commun. 8 , 2106 ( 2017 ). 29235460
28 Joo S. . , Structural insight into molecular mechanism of poly(ethylene terephthalate) degradation . Nat. Commun. 9 , 382 ( 2018 ). 29374183
29 Austin H. P. . , Characterization and engineering of a plastic-degrading aromatic polyesterase . Proc. Natl. Acad. Sci. U.S.A. 115 , E4350 ? E4357 ( 2018 ). 29666242
30 Fecker T. . , Active site flexibility as a hallmark for efficient PET degradation by I. sakaiensis PETase . Biophys. J. 114 , 1302 ? 1312 ( 2018 ). 29590588
31 Furukawa M. , Kawakami N. , Oda K. , Miyamoto K. , Acceleration of enzymatic degradation of poly (ethylene terephthalate) by surface coating with anionic surfactants . ChemSusChem 11 , 4018 ? 4025 ( 2018 ). 30291679
32 Ma Y. . , Enhanced poly(ethylene terephthalate) hydrolase activity by protein engineering . Engineering 4 , 888 ? 893 ( 2018 ).
33 Son H. F. . , Rational protein engineering of thermo-stable PETase from Ideonella sakaiensis for highly efficient PET degradation . ACS Catal. 9 , 3519 ? 3526 ( 2019 ).
34 Rauwerdink A. , Kazlauskas R. J. , How the same core catalytic machinery catalyzes 17 different reactions: The serine-histidine-aspartate catalytic triad of α/β-hydrolase fold enzymes . ACS Catal. 5 , 6153 ? 6176 ( 2015 ). 28580193
35 Palm G. J. . , Structure of the plastic-degrading Ideonella sakaiensis MHETase bound to a substrate . Nat. Commun. 10 , 1717 ( 2019 ). 30979881
36 Sagong H.-Y. . , Decomposition of PET film by MHETase using Exo-PETase function . ACS Catal. ( 2020 ) in press .
37 Hermoso J. A. . , The crystal structure of feruloyl esterase A from Aspergillus niger suggests evolutive functional convergence in feruloyl esterase family . J. Mol. Biol. 338 , 495 ? 506 ( 2004 ). 15081808
38 Suzuki K. . , Crystal structure of a feruloyl esterase belonging to the tannase family: A disulfide bond near a catalytic triad . Proteins 82 , 2857 ? 2867 ( 2014 ). 25066066
39 Brooks B. R. . , CHARMM: The biomolecular simulation program . J. Comput. Chem. 30 , 1545 ? 1614 ( 2009 ). 19444816
40 Phillips J. C. . , Scalable molecular dynamics with NAMD . J. Comput. Chem. 26 , 1781 ? 1802 ( 2005 ). 16222654
41 Best R. B. . , Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone φ, ψ and side-chain χ(1) and χ(2) dihedral angles . J. Chem. Theory Comput. 8 , 3257 ? 3273 ( 2012 ). 23341755
42 Case D. A. . , The Amber biomolecular simulation programs . J. Comput. Chem. 26 , 1668 ? 1688 ( 2005 ). 16200636
43 Gaus M. , Goez A. , Elstner M. , Parametrization and benchmark of DFTB3 for organic molecules . J. Chem. Theory Comput. 9 , 338 ? 354 ( 2013 ). 26589037
44 Knott B. C. . , The mechanism of cellulose hydrolysis by a two-step, retaining cellobiohydrolase elucidated by structural and transition path sampling studies . J. Am. Chem. Soc. 136 , 321 ? 329 ( 2014 ). 24341799
45 Mayes H. B. . , Who’s on base? Revealing the catalytic mechanism of inverting family 6 glycoside hydrolases . Chem. Sci. (Camb.) 7 , 5955 ? 5968 ( 2016 ).
46 Liu J. , Hamza A. , Zhan C.-G. , Fundamental reaction mechanism and free energy profile for (-)-cocaine hydrolysis catalyzed by cocaine esterase . J. Am. Chem. Soc. 131 , 11964 ? 11975 ( 2009 ). 19642701
47 Smith A. J. T. . , Structural reorganization and preorganization in enzyme active sites: Comparisons of experimental and theoretically ideal active site geometries in the multistep serine esterase reaction cycle . J. Am. Chem. Soc. 130 , 15361 ? 15373 ( 2008 ). 18939839
48 Zhou Y. , Wang S. , Zhang Y. , Catalytic reaction mechanism of acetylcholinesterase determined by Born-Oppenheimer ab initio QM/MM molecular dynamics simulations . J. Phys. Chem. B 114 , 8817 ? 8825 ( 2010 ). 20550161
49 Mitchell A. L. . , InterPro in 2019: Improving coverage, classification and access to protein sequence annotations . Nucleic Acids Res. 47 , D351 ? D360 ( 2019 ). 30398656
50 Altschul S. F. . , Gapped BLAST and PSI-BLAST: A new generation of protein database search programs . Nucleic Acids Res. 25 , 3389 ? 3402 ( 1997 ). 9254694
51 Narayan K. D. , Pandey S. K. , Das S. K. , Characterization of Comamonas thiooxidans sp. nov., and comparison of thiosulfate oxidation with Comamonas testosteroni and Comamonas composti . Curr. Microbiol. 61 , 248 ? 253 ( 2010 ). 20148250
52 Eddy S. R. , Profile hidden Markov models . Bioinformatics 14 , 755 ? 763 ( 1998 ). 9918945
53 Crepin V. F. , Faulds C. B. , Connerton I. F. , A non-modular type B feruloyl esterase from Neurospora crassa exhibits concentration-dependent substrate inhibition . Biochem. J. 370 , 417 ? 427 ( 2003 ). 12435269
54 Waterhouse A. . , SWISS-MODEL: Homology modelling of protein structures and complexes . Nucleic Acids Res. 46 , W296 ? W303 ( 2018 ). 29788355
55 Jaeger K.-E. . , Bacterial lipases . FEMS Microbiol. Rev. 15 , 29 ? 63 ( 1994 ). 7946464
56 Chen X. , Zaro J. L. , Shen W.-C. , Fusion protein linkers: Property, design and functionality . Adv. Drug Deliv. Rev. 65 , 1357 ? 1369 ( 2013 ). 23026637
57 Gandini A. , Silvestre A. J. , Neto C. P. , Sousa A. F. , Gomes M. , The furan counterpart of poly (ethylene terephthalate): An alternative material based on renewable resources . J. Polym. Sci. A Polym. Chem. 47 , 295 ? 298 ( 2009 ).
58 Barth M. . , A dual enzyme system composed of a polyester hydrolase and a carboxylesterase enhances the biocatalytic degradation of polyethylene terephthalate films . Biotechnol. J. 11 , 1082 ? 1087 ( 2016 ). 27214855
59 Carniel A. , Valoni E. , Nicomedes J. , Gomes A. C. , Castro A. M. d. , Lipase from Candida antarctica (CALB) and cutinase from Humicola insolens act synergistically for PET hydrolysis to terephthalic acid . Process Biochem. 59 , 84 ? 90 ( 2017 ).
60 Sasoh M. . , Characterization of the terephthalate degradation genes of Comamonas sp. strain E6 . Appl. Environ. Microbiol. 72 , 1825 ? 1832 ( 2006 ). 16517628
61 Hosaka M. . , Novel tripartite aromatic acid transporter essential for terephthalate uptake in Comamonas sp. strain E6 . Appl. Environ. Microbiol. 79 , 6148 ? 6155 ( 2013 ). 23913423
62 Shigematsu T. , Yumihara K. , Ueda Y. , Morimura S. , Kida K. , Purification and gene cloning of the oxygenase component of the terephthalate 1,2-dioxygenase system from Delftia tsuruhatensis strain T7 . FEMS Microbiol. Lett. 220 , 255 ? 260 ( 2003 ). 12670689
63 Chain P. S. G. . , Burkholderia xenovorans LB400 harbors a multi-replicon, 9.73-Mbp genome shaped for versatility . Proc. Natl. Acad. Sci. U.S.A. 103 , 15280 ? 15287 ( 2006 ). 17030797
64 Hara H. , Eltis L. D. , Davies J. E. , Mohn W. W. , Transcriptomic analysis reveals a bifurcated terephthalate degradation pathway in Rhodococcus sp. strain RHA1 . J. Bacteriol. 189 , 1641 ? 1647 ( 2007 ). 17142403
65 Choi K. Y. . , Molecular and biochemical analysis of phthalate and terephthalate degradation by Rhodococcus sp. strain DK17 . FEMS Microbiol. Lett. 252 , 207 ? 213 ( 2005 ). 16181748
66 Fuchs G. , Boll M. , Heider J. , Microbial degradation of aromatic compounds―From one strategy to four . Nat. Rev. Microbiol. 9 , 803 ? 816 ( 2011 ). 21963803
67 Tiso T. , Bio-upcycling of polyethylene terephthalate . bioRxiv:10.1101/2020.03.16.993592 (18 March 2020) .
68 Payne C. M. . , Fungal cellulases . Chem. Rev. 115 , 1308 ? 1448 ( 2015 ). 25629559
69 Eijsink V. G. , Vaaje-Kolstad G. , Varum K. M. , Horn S. J. , Towards new enzymes for biofuels: Lessons from chitinase research . Trends Biotechnol. 26 , 228 ? 235 ( 2008 ). 18367275
70 Quartinello F. . , Highly selective enzymatic recovery of building blocks from wool-cotton-polyester textile waste blends . Polymers (Basel) 10 , 1107 ( 2018 ).
71 Magnin A. , Pollet E. , Phalip V. , Averous L. , Evaluation of biological degradation of polyurethanes . Biotechnol. Adv. 39 , 107457 ( 2020 ). 31689471
72 Walker R. C. , Crowley M. F. , Case D. A. , The implementation of a fast and accurate QM/MM potential method in Amber . J. Comput. Chem. 29 , 1019 ? 1031 ( 2008 ). 18072177
73 Kumar S. , Stecher G. , Tamura K. , MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets . Mol. Biol. Evol. 33 , 1870 ? 1874 ( 2016 ). 27004904
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
저자가 APC(Article Processing Charge)를 지불한 논문에 한하여 자유로운 이용이 가능한, hybrid 저널에 출판된 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.