$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Characterization and engineering of a two-enzyme system for plastics depolymerization 원문보기

Proceedings of the National Academy of Sciences of the United States of America, v.117 no.41, 2020년, pp.25476 - 25485  

Knott, Brandon C. (Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401) ,  Erickson, Erika ,  Allen, Mark D. (Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401) ,  Gado, Japheth E. ,  Graham, Rosie (Centre for Enzyme Innovation, School of Biological Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DY, United Kingdom) ,  Kearns, Fiona L. ,  Pardo, Isabel (Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401) ,  Topuzlu, Ece ,  Anderson, Jared J. (Centre for Enzyme Innovation, School of Biological Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DY, United Kingdom) ,  Austin, Harry P. ,  Dominick, Graham (Department of Chemistry, University of South Florida, Tampa, FL 33620) ,  Johnson, Christopher W. ,  Rorrer, Nicholas A. (Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401) ,  Szostkiewicz, Caralyn J. ,  Copié, Valérie (Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401) ,  Payne, Christina M. ,  Woodcock, H. Lee (Renewable Resources and Enabling Scienc) ,  Donohoe, Bryon S. ,  Beckham, Gregg T. ,  McGeehan, John E.

Abstract AI-Helper 아이콘AI-Helper

SignificanceDeconstruction of recalcitrant polymers, such as cellulose or chitin, is accomplished in nature by synergistic enzyme cocktails that evolved over millions of years. In these systems, soluble dimeric or oligomeric intermediates are typically released via interfacial biocatalysis, and addi...

Keyword

참고문헌 (73)

  1. 1 Law K. L. . , Plastic accumulation in the North Atlantic subtropical gyre . Science 329 , 1185 ? 1188 ( 2010 ). 20724586 

  2. 2 Cozar A. . , Plastic debris in the open ocean . Proc. Natl. Acad. Sci. U.S.A. 111 , 10239 ? 10244 ( 2014 ). 24982135 

  3. 3 Jambeck J. R. . , Marine pollution. Plastic waste inputs from land into the ocean . Science 347 , 768 ? 771 ( 2015 ). 25678662 

  4. 4 Lamb J. B. . , Plastic waste associated with disease on coral reefs . Science 359 , 460 ? 462 ( 2018 ). 29371469 

  5. 5 de Souza Machado A. A. , Kloas W. , Zarfl C. , Hempel S. , Rillig M. C. , Microplastics as an emerging threat to terrestrial ecosystems . Glob. Change Biol. 24 , 1405 ? 1416 ( 2018 ). 

  6. 6 Allen S. . , Atmospheric transport and deposition of microplastics in a remote mountain catchment . Nat. Geosci. 12 , 679 ( 2019 ). 

  7. 7 Restrepo-Florez J.-M. , Bassi A. , Thompson M. R. , Microbial degradation and deterioration of polyethylene―A review . Intl. Biodeter. Biodegrad. 88 , 83 ? 90 ( 2014 ). 

  8. 8 Yang J. , Yang Y. , Wu W.-M. , Zhao J. , Jiang L. , Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms . Environ. Sci. Technol. 48 , 13776 ? 13784 ( 2014 ). 25384056 

  9. 9 Yang Y. . , Biodegradation and mineralization of polystyrene by plastic-eating mealworms: Part 2. Role of gut microorganisms . Environ. Sci. Technol. 49 , 12087 ? 12093 ( 2015 ). 26390390 

  10. 10 Yoshida S. . , A bacterium that degrades and assimilates poly(ethylene terephthalate) . Science 351 , 1196 ? 1199 ( 2016 ). 26965627 

  11. 11 Bombelli P. , Howe C. J. , Bertocchini F. , Polyethylene bio-degradation by caterpillars of the wax moth Galleria mellonella . Curr. Biol. 27 , R292 ? R293 ( 2017 ). 28441558 

  12. 12 Dvoak P. , Nikel P. I. , Damborsky J. , de Lorenzo V. , Bioremediation 3.0: Engineering pollutant-removing bacteria in the times of systemic biology . Biotechnol. Adv. 35 , 845 ? 866 ( 2017 ). 28789939 

  13. 13 Wierckx N. . , Plastic waste as a novel substrate for industrial biotechnology . Microb. Biotechnol. 8 , 900 ? 903 ( 2015 ). 26482561 

  14. 14 Wei R. , Zimmermann W. , Biocatalysis as a green route for recycling the recalcitrant plastic polyethylene terephthalate . Microb. Biotechnol. 10 , 1302 ? 1307 ( 2017 ). 28401691 

  15. 15 Wei R. , Zimmermann W. , Microbial enzymes for the recycling of recalcitrant petroleum-based plastics: How far are we? Microb. Biotechnol. 10 , 1308 ? 1322 ( 2017 ). 28371373 

  16. 16 Taniguchi I. . , Biodegradation of PET: Current status and application aspects . ACS Catal. 9 , 4089 ? 4105 ( 2019 ). 

  17. 17 Araujo R. . , Tailoring cutinase activity towards polyethylene terephthalate and polyamide 6,6 fibers . J. Biotechnol. 128 , 849 ? 857 ( 2007 ). 17306400 

  18. 18 Ronkvist A. M. , Xie W. , Lu W. , Gross R. A. , Cutinase-catalyzed hydrolysis of poly (ethylene terephthalate) . Macromolecules 42 , 5128 ? 5138 ( 2009 ). 

  19. 19 Herrero Acero E. . , Enzymatic surface hydrolysis of PET: Effect of structural diversity on kinetic properties of cutinases from Thermobifida . Macromolecules 44 , 4632 ? 4640 ( 2011 ). 

  20. 20 Ribitsch D. . , Characterization of a new cutinase from Thermobifida alba for PET-surface hydrolysis . Biocat. Biotrans. 30 , 2 ? 9 ( 2012 ). 

  21. 21 Sulaiman S. . , Isolation of a novel cutinase homolog with polyethylene terephthalate-degrading activity from leaf-branch compost by using a metagenomic approach . Appl. Environ. Microbiol. 78 , 1556 ? 1562 ( 2012 ). 22194294 

  22. 22 Ribitsch D. . , Fusion of binding domains to Thermobifida cellulosilytica cutinase to tune sorption characteristics and enhancing PET hydrolysis . Biomacromolecules 14 , 1769 ? 1776 ( 2013 ). 23718548 

  23. 23 Roth C. . , Structural and functional studies on a thermostable polyethylene terephthalate degrading hydrolase from Thermobifida fusca . Appl. Microbiol. Biotechnol. 98 , 7815 ? 7823 ( 2014 ). 24728714 

  24. 24 Ribitsch D. . , Enhanced cutinase-catalyzed hydrolysis of polyethylene terephthalate by covalent fusion to hydrophobins . Appl. Environ. Microbiol. 81 , 3586 ? 3592 ( 2015 ). 25795674 

  25. 25 de Castro A. M. , Carniel A. , Nicomedes Junior J. , da Conceicao Gomes A. , Valoni E. , Screening of commercial enzymes for poly(ethylene terephthalate) (PET) hydrolysis and synergy studies on different substrate sources . J. Ind. Microbiol. Biotechnol. 44 , 835 ? 844 ( 2017 ). 28424881 

  26. 26 Danso D. . , New insights into the function and global distribution of polyethylene terephthalate (PET)-degrading bacteria and enzymes in marine and terrestrial metagenomes . Appl. Environ. Microbiol. 84 , e02773 - 17 ( 2018 ). 29427431 

  27. 27 Han X. . , Structural insight into catalytic mechanism of PET hydrolase . Nat. Commun. 8 , 2106 ( 2017 ). 29235460 

  28. 28 Joo S. . , Structural insight into molecular mechanism of poly(ethylene terephthalate) degradation . Nat. Commun. 9 , 382 ( 2018 ). 29374183 

  29. 29 Austin H. P. . , Characterization and engineering of a plastic-degrading aromatic polyesterase . Proc. Natl. Acad. Sci. U.S.A. 115 , E4350 ? E4357 ( 2018 ). 29666242 

  30. 30 Fecker T. . , Active site flexibility as a hallmark for efficient PET degradation by I. sakaiensis PETase . Biophys. J. 114 , 1302 ? 1312 ( 2018 ). 29590588 

  31. 31 Furukawa M. , Kawakami N. , Oda K. , Miyamoto K. , Acceleration of enzymatic degradation of poly (ethylene terephthalate) by surface coating with anionic surfactants . ChemSusChem 11 , 4018 ? 4025 ( 2018 ). 30291679 

  32. 32 Ma Y. . , Enhanced poly(ethylene terephthalate) hydrolase activity by protein engineering . Engineering 4 , 888 ? 893 ( 2018 ). 

  33. 33 Son H. F. . , Rational protein engineering of thermo-stable PETase from Ideonella sakaiensis for highly efficient PET degradation . ACS Catal. 9 , 3519 ? 3526 ( 2019 ). 

  34. 34 Rauwerdink A. , Kazlauskas R. J. , How the same core catalytic machinery catalyzes 17 different reactions: The serine-histidine-aspartate catalytic triad of α/β-hydrolase fold enzymes . ACS Catal. 5 , 6153 ? 6176 ( 2015 ). 28580193 

  35. 35 Palm G. J. . , Structure of the plastic-degrading Ideonella sakaiensis MHETase bound to a substrate . Nat. Commun. 10 , 1717 ( 2019 ). 30979881 

  36. 36 Sagong H.-Y. . , Decomposition of PET film by MHETase using Exo-PETase function . ACS Catal. ( 2020 ) in press . 

  37. 37 Hermoso J. A. . , The crystal structure of feruloyl esterase A from Aspergillus niger suggests evolutive functional convergence in feruloyl esterase family . J. Mol. Biol. 338 , 495 ? 506 ( 2004 ). 15081808 

  38. 38 Suzuki K. . , Crystal structure of a feruloyl esterase belonging to the tannase family: A disulfide bond near a catalytic triad . Proteins 82 , 2857 ? 2867 ( 2014 ). 25066066 

  39. 39 Brooks B. R. . , CHARMM: The biomolecular simulation program . J. Comput. Chem. 30 , 1545 ? 1614 ( 2009 ). 19444816 

  40. 40 Phillips J. C. . , Scalable molecular dynamics with NAMD . J. Comput. Chem. 26 , 1781 ? 1802 ( 2005 ). 16222654 

  41. 41 Best R. B. . , Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone φ, ψ and side-chain χ(1) and χ(2) dihedral angles . J. Chem. Theory Comput. 8 , 3257 ? 3273 ( 2012 ). 23341755 

  42. 42 Case D. A. . , The Amber biomolecular simulation programs . J. Comput. Chem. 26 , 1668 ? 1688 ( 2005 ). 16200636 

  43. 43 Gaus M. , Goez A. , Elstner M. , Parametrization and benchmark of DFTB3 for organic molecules . J. Chem. Theory Comput. 9 , 338 ? 354 ( 2013 ). 26589037 

  44. 44 Knott B. C. . , The mechanism of cellulose hydrolysis by a two-step, retaining cellobiohydrolase elucidated by structural and transition path sampling studies . J. Am. Chem. Soc. 136 , 321 ? 329 ( 2014 ). 24341799 

  45. 45 Mayes H. B. . , Who’s on base? Revealing the catalytic mechanism of inverting family 6 glycoside hydrolases . Chem. Sci. (Camb.) 7 , 5955 ? 5968 ( 2016 ). 

  46. 46 Liu J. , Hamza A. , Zhan C.-G. , Fundamental reaction mechanism and free energy profile for (-)-cocaine hydrolysis catalyzed by cocaine esterase . J. Am. Chem. Soc. 131 , 11964 ? 11975 ( 2009 ). 19642701 

  47. 47 Smith A. J. T. . , Structural reorganization and preorganization in enzyme active sites: Comparisons of experimental and theoretically ideal active site geometries in the multistep serine esterase reaction cycle . J. Am. Chem. Soc. 130 , 15361 ? 15373 ( 2008 ). 18939839 

  48. 48 Zhou Y. , Wang S. , Zhang Y. , Catalytic reaction mechanism of acetylcholinesterase determined by Born-Oppenheimer ab initio QM/MM molecular dynamics simulations . J. Phys. Chem. B 114 , 8817 ? 8825 ( 2010 ). 20550161 

  49. 49 Mitchell A. L. . , InterPro in 2019: Improving coverage, classification and access to protein sequence annotations . Nucleic Acids Res. 47 , D351 ? D360 ( 2019 ). 30398656 

  50. 50 Altschul S. F. . , Gapped BLAST and PSI-BLAST: A new generation of protein database search programs . Nucleic Acids Res. 25 , 3389 ? 3402 ( 1997 ). 9254694 

  51. 51 Narayan K. D. , Pandey S. K. , Das S. K. , Characterization of Comamonas thiooxidans sp. nov., and comparison of thiosulfate oxidation with Comamonas testosteroni and Comamonas composti . Curr. Microbiol. 61 , 248 ? 253 ( 2010 ). 20148250 

  52. 52 Eddy S. R. , Profile hidden Markov models . Bioinformatics 14 , 755 ? 763 ( 1998 ). 9918945 

  53. 53 Crepin V. F. , Faulds C. B. , Connerton I. F. , A non-modular type B feruloyl esterase from Neurospora crassa exhibits concentration-dependent substrate inhibition . Biochem. J. 370 , 417 ? 427 ( 2003 ). 12435269 

  54. 54 Waterhouse A. . , SWISS-MODEL: Homology modelling of protein structures and complexes . Nucleic Acids Res. 46 , W296 ? W303 ( 2018 ). 29788355 

  55. 55 Jaeger K.-E. . , Bacterial lipases . FEMS Microbiol. Rev. 15 , 29 ? 63 ( 1994 ). 7946464 

  56. 56 Chen X. , Zaro J. L. , Shen W.-C. , Fusion protein linkers: Property, design and functionality . Adv. Drug Deliv. Rev. 65 , 1357 ? 1369 ( 2013 ). 23026637 

  57. 57 Gandini A. , Silvestre A. J. , Neto C. P. , Sousa A. F. , Gomes M. , The furan counterpart of poly (ethylene terephthalate): An alternative material based on renewable resources . J. Polym. Sci. A Polym. Chem. 47 , 295 ? 298 ( 2009 ). 

  58. 58 Barth M. . , A dual enzyme system composed of a polyester hydrolase and a carboxylesterase enhances the biocatalytic degradation of polyethylene terephthalate films . Biotechnol. J. 11 , 1082 ? 1087 ( 2016 ). 27214855 

  59. 59 Carniel A. , Valoni E. , Nicomedes J. , Gomes A. C. , Castro A. M. d. , Lipase from Candida antarctica (CALB) and cutinase from Humicola insolens act synergistically for PET hydrolysis to terephthalic acid . Process Biochem. 59 , 84 ? 90 ( 2017 ). 

  60. 60 Sasoh M. . , Characterization of the terephthalate degradation genes of Comamonas sp. strain E6 . Appl. Environ. Microbiol. 72 , 1825 ? 1832 ( 2006 ). 16517628 

  61. 61 Hosaka M. . , Novel tripartite aromatic acid transporter essential for terephthalate uptake in Comamonas sp. strain E6 . Appl. Environ. Microbiol. 79 , 6148 ? 6155 ( 2013 ). 23913423 

  62. 62 Shigematsu T. , Yumihara K. , Ueda Y. , Morimura S. , Kida K. , Purification and gene cloning of the oxygenase component of the terephthalate 1,2-dioxygenase system from Delftia tsuruhatensis strain T7 . FEMS Microbiol. Lett. 220 , 255 ? 260 ( 2003 ). 12670689 

  63. 63 Chain P. S. G. . , Burkholderia xenovorans LB400 harbors a multi-replicon, 9.73-Mbp genome shaped for versatility . Proc. Natl. Acad. Sci. U.S.A. 103 , 15280 ? 15287 ( 2006 ). 17030797 

  64. 64 Hara H. , Eltis L. D. , Davies J. E. , Mohn W. W. , Transcriptomic analysis reveals a bifurcated terephthalate degradation pathway in Rhodococcus sp. strain RHA1 . J. Bacteriol. 189 , 1641 ? 1647 ( 2007 ). 17142403 

  65. 65 Choi K. Y. . , Molecular and biochemical analysis of phthalate and terephthalate degradation by Rhodococcus sp. strain DK17 . FEMS Microbiol. Lett. 252 , 207 ? 213 ( 2005 ). 16181748 

  66. 66 Fuchs G. , Boll M. , Heider J. , Microbial degradation of aromatic compounds―From one strategy to four . Nat. Rev. Microbiol. 9 , 803 ? 816 ( 2011 ). 21963803 

  67. 67 Tiso T. , Bio-upcycling of polyethylene terephthalate . bioRxiv:10.1101/2020.03.16.993592 (18 March 2020) . 

  68. 68 Payne C. M. . , Fungal cellulases . Chem. Rev. 115 , 1308 ? 1448 ( 2015 ). 25629559 

  69. 69 Eijsink V. G. , Vaaje-Kolstad G. , Varum K. M. , Horn S. J. , Towards new enzymes for biofuels: Lessons from chitinase research . Trends Biotechnol. 26 , 228 ? 235 ( 2008 ). 18367275 

  70. 70 Quartinello F. . , Highly selective enzymatic recovery of building blocks from wool-cotton-polyester textile waste blends . Polymers (Basel) 10 , 1107 ( 2018 ). 

  71. 71 Magnin A. , Pollet E. , Phalip V. , Averous L. , Evaluation of biological degradation of polyurethanes . Biotechnol. Adv. 39 , 107457 ( 2020 ). 31689471 

  72. 72 Walker R. C. , Crowley M. F. , Case D. A. , The implementation of a fast and accurate QM/MM potential method in Amber . J. Comput. Chem. 29 , 1019 ? 1031 ( 2008 ). 18072177 

  73. 73 Kumar S. , Stecher G. , Tamura K. , MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets . Mol. Biol. Evol. 33 , 1870 ? 1874 ( 2016 ). 27004904 

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD(Hybrid)

저자가 APC(Article Processing Charge)를 지불한 논문에 한하여 자유로운 이용이 가능한, hybrid 저널에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로