$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Measuring the right factors: A review of variables and models for thermal comfort and indoor air quality

Renewable & sustainable energy reviews, v.135, 2021년, pp.110436 -   

Ma, Nan (Center for Environmental Building and Design, Weitzman School of Design, University of Pennsylvania) ,  Aviv, Dorit (Center for Environmental Building and Design, Weitzman School of Design, University of Pennsylvania) ,  Guo, Hongshan (School of Architecture, Princeton University) ,  Braham, William W. (Center for Environmental Building and Design, Weitzman School of Design, University of Pennsylvania)

Abstract AI-Helper 아이콘AI-Helper

Abstract The indoor environment directly affects health and comfort as humans spend most of the day indoors. However, improperly controlled ventilation systems can expend unnecessary energy and increase health risks, while improved thermal and air quality can often result in higher energy consumpti...

주제어

참고문헌 (170)

  1. Indoor Air Frontczak 22 119 2012 10.1111/j.1600-0668.2011.00745.x Quantitative relationships between occupant satisfaction and satisfaction aspects of indoor environmental quality and building design 

  2. Indoor Air, Supplement Sundell 14 51 2004 10.1111/j.1600-0668.2004.00273.x On the history of indoor air quality and health 

  3. Am J Publ Health Mendell 92 1430 2002 10.2105/AJPH.92.9.1430 Improving the health of workers in indoor environments: priority research needs for a national occupational research agenda 

  4. Indoor Air Li 17 2 2007 10.1111/j.1600-0668.2006.00445.x Role of ventilation in airborne transmission of infectious agents in the built environment - a multidisciplinary systematic review 

  5. Renew Sustain Energy Rev Chenari 59 1426 2016 10.1016/j.rser.2016.01.074 Towards sustainable, energy-efficient and healthy ventilation strategies in buildings: a review 

  6. Build Environ Carrer 94 273 2015 10.1016/j.buildenv.2015.08.011 What does the scientific literature tell us about the ventilation-health relationship in public and residential buildings? 

  7. Energy Build d'Ambrosio Alfano 81 326 2014 10.1016/j.enbuild.2014.06.033 Thermal comfort: design and assessment for energy saving 

  8. Build Environ Yin 45 338 2010 10.1016/j.buildenv.2009.06.012 Natural ventilation potential model considering solution multiplicity, window opening percentage, air velocity and humidity in China 

  9. Renew Sustain Energy Rev Okochi 59 784 2016 10.1016/j.rser.2015.12.328 A review of recent developments and technological advancements of variable-air-volume (VAV) air-conditioning systems 

  10. Appl Energy Yang 115 164 2014 10.1016/j.apenergy.2013.10.062 Thermal comfort and building energy consumption implications - a review 

  11. Energy Build Wang 147 27 2017 10.1016/j.enbuild.2017.04.066 A state of art review on methodologies for control strategies in low energy buildings in the period from 2006 to 2016 

  12. Energy Convers Manag Vakiloroaya 77 738 2014 10.1016/j.enconman.2013.10.023 A review of different strategies for HVAC energy saving 

  13. Renew Sustain Energy Rev Afroz 83 64 2018 10.1016/j.rser.2017.10.044 Modeling techniques used in building HVAC control systems: a review 

  14. Energy Build Kolokotsa 38 1084 2006 10.1016/j.enbuild.2005.12.007 Design and installation of an advanced EIB™ fuzzy indoor comfort controller using Matlab™ 

  15. Inf Sci Carvajal 123 249 2000 10.1016/S0020-0255(99)00127-9 Fuzzy PID controller: design, performance evaluation, and stability analysis 

  16. Energy Build Calvino 36 97 2004 10.1016/j.enbuild.2003.10.004 The control of indoor thermal comfort conditions: introducing a fuzzy adaptive controller 

  17. Renew Sustain Energy Rev Djongyang 14 2626 2010 10.1016/j.rser.2010.07.040 Thermal comfort: a review paper 

  18. Renew Sustain Energy Rev Park 82 2664 2018 10.1016/j.rser.2017.09.102 Comprehensive analysis of the relationship between thermal comfort and building control research - a data-driven literature review 

  19. Indoor Air Fisk 27 1039 2017 10.1111/ina.12403 The ventilation problem in schools: literature review 

  20. Indoor Air Sundell 21 191 2011 10.1111/j.1600-0668.2010.00703.x Ventilation rates and health: multidisciplinary review of the scientific literature 

  21. Renew Sustain Energy Rev Enescu 79 1353 2017 10.1016/j.rser.2017.05.175 A review of thermal comfort models and indicators for indoor environments 

  22. Energy Build Andre 222 110011 2020 10.1016/j.enbuild.2020.110011 User-centered environmental control: a review of current findings on personal conditioning systems and personal comfort models 

  23. Appl Energy Jung 239 1471 2019 10.1016/j.apenergy.2019.01.070 Human-in-the-loop HVAC operations: a quantitative review on occupancy, comfort, and energy-efficiency dimensions 

  24. Indoor Air Wei 29 704 2019 10.1111/ina.12580 Machine learning and statistical models for predicting indoor air quality 

  25. Build Environ Liu 64 7 2013 10.1016/j.buildenv.2013.02.012 Predicting emissions of volatile and semivolatile organic compounds from building materials: a review 

  26. Build Environ Cheng 47 13 2012 10.1016/j.buildenv.2011.05.011 Thermal comfort models: a review and numerical investigation 

  27. Sustain Cities Soc Carreira 41 275 2018 10.1016/j.scs.2018.05.043 Can HVAC really learn from users? A simulation-based study on the effectiveness of voting for comfort and energy use optimization 

  28. Energy Build Zhao 82 341 2014 10.1016/j.enbuild.2014.07.033 Occupant behavior and schedule modeling for building energy simulation through office appliance power consumption data mining 

  29. Build Environ Dalamagkidis 42 2686 2007 10.1016/j.buildenv.2006.07.010 Reinforcement learning for energy conservation and comfort in buildings 

  30. Appl Energy Vazquez-Canteli 235 1072 2019 10.1016/j.apenergy.2018.11.002 Reinforcement learning for demand response: a review of algorithms and modeling techniques 

  31. Indoor Air Van Hoof 18 182 2008 10.1111/j.1600-0668.2007.00516.x Forty years of Fanger's model of thermal comfort: comfort for all? 

  32. Fanger 1970 Thermal comfort: analysis and applications in environmental engineering 

  33. ASHRAE Transacions Fanger 73 1967 Calculation of thermal comfort-introduction of a basic comfort equation 

  34. Renew Sustain Energy Rev Guo 117 109207 2020 10.1016/j.rser.2019.06.014 On the understanding of the mean radiant temperature within both the indoor and outdoor environment, a critical review 

  35. 2013 ANSI/ASHRAE Standard 55-2013, Thermal Environmental Conditions for Human Occupancy 

  36. 2005 ISO 7730-2005 Ergonomics of the thermal environment-analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria 

  37. Renew Sustain Energy Rev Croitoru 44 304 2015 10.1016/j.rser.2014.10.105 Thermal comfort models for indoor spaces and vehicles-current capabilities and future perspectives 

  38. Build Environ Singh 37 415 2002 10.1016/S0360-1323(01)00032-4 Numerical calculation of psychrometric properties on a calculator 

  39. Procedia Engineering Ye 121 1697 2015 10.1016/j.proeng.2015.09.122 A simple VOC prioritization method to determine ventilation rate for indoor environment based on building material emissions 

  40. Int J Hyg Environ Health Wolkoff 221 376 2018 10.1016/j.ijheh.2018.01.015 Indoor air humidity, air quality, and health - an overview 

  41. Energy Build Rupp 105 178 2015 10.1016/j.enbuild.2015.07.047 A review of human thermal comfort in the built environment 

  42. Indoor Air Fang 14 74 2004 10.1111/j.1600-0668.2004.00276.x Impact of indoor air temperature and humidity in an office on perceived air quality, SBS symptoms and performance 

  43. Build Environ Wan 44 411 2009 10.1016/j.buildenv.2008.04.001 A new method of determination of indoor temperature and relative humidity with consideration of human thermal comfort 

  44. Energy Build Yang 109 255 2015 10.1016/j.enbuild.2015.09.071 Numerical investigation on the airflow characteristics and thermal comfort in buoyancy-driven natural ventilation rooms 

  45. Energy Build Ioannou 170 229 2018 10.1016/j.enbuild.2018.04.006 In-situ real time measurements of thermal comfort and comparison with the adaptive comfort theory in Dutch residential dwellings 

  46. Build Environ Han 42 4043 2007 10.1016/j.buildenv.2006.06.028 Field study on occupants' thermal comfort and residential thermal environment in a hot-humid climate of China 

  47. Energy Procedia Gilani 75 1373 2015 10.1016/j.egypro.2015.07.218 Thermal comfort analysis of PMV model prediction in air conditioned and naturally ventilated buildings 

  48. Indoor Built Environ Li 19 221 2010 10.1177/1420326X10365213 Physiological expression of human thermal comfort to indoor operative temperature in the non-HVAC environment 

  49. Int J Heat Mass Tran Prek 48 731 2005 10.1016/j.ijheatmasstransfer.2004.09.006 Thermodynamic analysis of human heat and mass transfer and their impact on thermal comfort 

  50. de Dear R, Brager G, Cooper D. Developing an adaptive Model of Thermal Comfort and Preference1997. 

  51. Build Environ Yao 44 2089 2009 10.1016/j.buildenv.2009.02.014 A theoretical adaptive model of thermal comfort - adaptive Predicted Mean Vote (aPMV) 

  52. Build Environ Holopainen 71 60 2014 10.1016/j.buildenv.2013.09.009 Comfort assessment in the context of sustainable buildings: comparison of simplified and detailed human thermal sensation methods 

  53. Build Environ Gao 92 200 2015 10.1016/j.buildenv.2015.04.030 Comparative analysis of modified PMV models and SET models to predict human thermal sensation in naturally ventilated buildings 

  54. Energy Build Baker 23 175 1996 10.1016/0378-7788(95)00942-6 Thermal comfort for free-running buildings 

  55. Energy Build Humphreys 34 667 2002 10.1016/S0378-7788(02)00018-X The validity of ISO-PMV for predicting comfort votes in every-day thermal environments 

  56. Build Environ Atmaca 42 3210 2007 10.1016/j.buildenv.2006.08.009 Effects of radiant temperature on thermal comfort 

  57. Renew Sustain Energy Rev Butera 2 39 1998 10.1016/S1364-0321(98)00011-2 Chapter 3-principles of thermal comfort 

  58. Energy Build Nicol 34 563 2002 10.1016/S0378-7788(02)00006-3 Adaptive thermal comfort and sustainable thermal standards for buildings 

  59. Nat Clim Change Kingma 5 1054 2015 10.1038/nclimate2741 Energy consumption in buildings and female thermal demand 

  60. Build Environ Nguyen 56 291 2012 10.1016/j.buildenv.2012.03.021 An adaptive thermal comfort model for hot humid South-East Asia 

  61. Energy Build Halawa 51 101 2012 10.1016/j.enbuild.2012.04.011 The adaptive approach to thermal comfort: a critical overview 

  62. Atmos Pollut Res Abdul-Wahab 6 751 2015 10.5094/APR.2015.084 A review of standards and guidelines set by international bodies for the parameters of indoor air quality 

  63. American Society of Heating 2016 Refrigerating and air-Conditioning Engineers (ASHRAE). ANSI/ASHRAE Standard 621-2016 Ventilation for acceptable Indoor air Quality 

  64. Occupational Safety Health Administration Osha 2014 OSHA Technical Manual Section III: Chapter 2: Indoor air Quality Investigation 

  65. United States Environmental Protection Agency EPA 2010 Building Codes and Indoor air Quality 

  66. United States Environmental Protection Agency EPA 2004 Air toxics risk assessment reference library Technical Resource Manual 

  67. World Health Organization WHO 2010 WHO guidelines for indoor air quality: selected pollutants 

  68. World Health Organization WHO 2006 WHO Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide 

  69. Indoor Air Apte 10 246 2000 10.1034/j.1600-0668.2000.010004246.x Associations between indoor CO2 concentrations and sick building syndrome symptoms in U.S. office buildings: an analysis of the 1994-1996 BASE study data 

  70. Indoor Air Seppanen 9 226 1999 10.1111/j.1600-0668.1999.00003.x Association of ventilation rates and CO2 concentrations with health and other responses in commercial and institutional buildings 

  71. Build Environ Beko 45 2289 2010 10.1016/j.buildenv.2010.04.014 Ventilation rates in the bedrooms of 500 Danish children 

  72. Indoor Air Shaughnessy 16 465 2006 10.1111/j.1600-0668.2006.00440.x A preliminary study on the association between ventilation rates in classrooms and student performance 

  73. Int Arch Occup Environ Health Norback 82 21 2008 10.1007/s00420-008-0301-9 Sick building syndrome in relation to air exchange rate, CO2, room temperature and relative air humidity in university computer classrooms: an experimental study 

  74. Indoor Air Azuma 25 499 2015 10.1111/ina.12158 Prevalence and risk factors associated with nonspecific building-related symptoms in office employees in Japan: relationships between work environment, Indoor Air Quality, and occupational stress 

  75. Indoor Air Zhang 27 47 2017 10.1111/ina.12284 Effects of exposure to carbon dioxide and bioeffluents on perceived air quality, self-assessed acute health symptoms, and cognitive performance 

  76. Indoor Air Muscatiello 25 157 2015 10.1111/ina.12136 Classroom conditions and CO2 concentrations and teacher health symptom reporting in 10 New York State Schools 

  77. Environ Health Perspect Allen 124 805 2016 10.1289/ehp.1510037 Associations of cognitive function scores with carbon dioxide, ventilation, and volatile organic compound exposures in office workers: a controlled exposure study of green and conventional office environments 

  78. Environ Health Perspect Satish 120 1671 2012 10.1289/ehp.1104789 Is CO2 an indoor pollutant? Direct effects of low-to-moderate CO2 concentrations on human decision-making performance 

  79. Build Environ Mentese 93 72 2015 10.1016/j.buildenv.2015.01.023 Association between respiratory health and indoor air pollution exposure in Canakkale, Turkey 

  80. Build Environ Lu 45 1161 2010 10.1016/j.buildenv.2009.10.024 A novel methodology for estimating space air change rates and occupant CO2 generation rates from measurements in mechanically-ventilated buildings 

  81. Energy Build Griffiths 40 556 2008 10.1016/j.enbuild.2007.04.013 Control of CO2 in a naturally ventilated classroom 

  82. Energy Build Ng 43 3216 2011 10.1016/j.enbuild.2011.08.021 CO2-based demand controlled ventilation under new ASHRAE Standard 62.1-2010: a case study for a gymnasium of an elementary school at West Lafayette, Indiana 

  83. Indoor Air Chan 25 381 2015 10.1111/ina.12152 Contaminant levels, source strengths, and ventilation rates in California retail stores 

  84. Build Environ Ramalho 93 115 2015 10.1016/j.buildenv.2015.03.018 Association of carbon dioxide with indoor air pollutants and exceedance of health guideline values 

  85. Am J Respir Crit Care Med Samet 136 1486 1987 Health effects and sources of indoor air pollution. Part I 

  86. United Nations Environment Programme and the World Health Organization 2012 State of the Science of Endocrine Disrupting Chemicals 

  87. Chem Rev Zhang 115 3803 2015 10.1021/acs.chemrev.5b00067 Formation of urban fine particulate matter 

  88. World Health Organization WHO 2013 Health effects of particulate matter Policy implications for countries in eastern Europe, Caucasus and central Asia 

  89. Environ Int Kim 74 136 2015 10.1016/j.envint.2014.10.005 A review on the human health impact of airborne particulate matter 

  90. Indoor Air Nazaroff 14 175 2004 10.1111/j.1600-0668.2004.00286.x Indoor particle dynamics 

  91. J Toxicol Environ Health Madureira 75 1423 2012 10.1080/15287394.2012.721177 Levels and indoor-outdoor relationships of size-specific particulate matter in naturally ventilated Portuguese schools 

  92. Atmos Environ Castro 45 1799 2011 10.1016/j.atmosenv.2011.01.018 Polycyclic aromatic hydrocarbons in gas and particulate phases of indoor environments influenced by tobacco smoke: levels, phase distributions, and health risks 

  93. Indoor Air Fonseca 24 618 2014 10.1111/ina.12114 Assessment of ultrafine particles in Portuguese preschools: levels and exposure doses 

  94. Build Environ Kalaiarasan 44 1493 2009 10.1016/j.buildenv.2008.07.012 Traffic-generated airborne particles in naturally ventilated multi-storey residential buildings of Singapore: vertical distribution and potential health risks 

  95. Renew Sustain Energy Rev Naylor 96 1 2018 10.1016/j.rser.2018.07.019 A review of occupant-centric building control strategies to reduce building energy use 

  96. Sci Total Environ Norback 592 153 2017 10.1016/j.scitotenv.2017.02.215 Volatile organic compounds (VOC), formaldehyde and nitrogen dioxide (NO2) in schools in Johor Bahru, Malaysia: associations with rhinitis, ocular, throat and dermal symptoms, headache and fatigue 

  97. J Expo Sci Environ Epidemiol Ito 17 S45 2007 10.1038/sj.jes.7500627 Characterization of PM2.5, gaseous pollutants, and meteorological interactions in the context of time-series health effects models 

  98. Environ Health Perspect Cesaroni 121 324 2013 10.1289/ehp.1205862 Long-term exposure to urban air pollution and mortality in a cohort of more than a million adults in rome 

  99. Eur Ann Allergy Clin Immunol Norback 55 163 2000 10.1034/j.1398-9995.2000.00353.x Indoor air pollutants in schools: nasal patency and biomarkers in nasal lavage 

  100. Eur Respir J Faustini 44 744 2014 10.1183/09031936.00114713 Nitrogen dioxide and mortality: review and meta-analysis of long-term studies 

  101. Build Environ Challoner 80 159 2014 10.1016/j.buildenv.2014.05.032 Indoor/outdoor air pollution relationships in ten commercial buildings: PM2. 5 and NO2 

  102. Crit Rev Toxicol Hesterberg 39 743 2009 10.3109/10408440903294945 Critical review of the human data on short-term nitrogen dioxide (NO2) exposures: evidence for NO2 no-effect levels 

  103. Indoor Air Apte 18 156 2008 10.1111/j.1600-0668.2008.00521.x Outdoor ozone and building-related symptoms in the BASE study 

  104. Build Environ Walker 59 456 2013 10.1016/j.buildenv.2012.09.013 Effect of ventilation strategies on residential ozone levels 

  105. Build Environ Lai 93 112 2015 10.1016/j.buildenv.2015.06.015 Study of outdoor ozone penetration into buildings through ventilation and infiltration 

  106. Indoor Air Weschler 10 269 2000 10.1034/j.1600-0668.2000.010004269.x Ozone in indoor environments: concentration and chemistry 

  107. Environ Health Perspect Weschler 114 1489 2006 10.1289/ehp.9256 Impact on public health: contributions from indoor exposures to ozone and products of ozone-initiated chemistry 

  108. Environ Sci Technol Fadeyi 47 3933 2013 10.1021/es3050828 Impact of human presence on secondary organic aerosols derived from ozone-initiated chemistry in a simulated office environment 

  109. American Society of Heating 2011 Refrigerating and air-Conditioning Engineers (ASHRAE). Ozone and Indoor Chemistry Environmental Health Committee (EHC) Emerging Issue Report 

  110. Indoor Air Brinke 8 140 1998 10.1111/j.1600-0668.1998.t01-1-00002.x Development of new volatile organic compound (VOC) exposure metrics and their relationship to “sick building syndrome” symptoms 

  111. Atmos Environ Tang 39 7374 2005 10.1016/j.atmosenv.2005.09.018 Volatile organic compounds in a multi-storey shopping mall in guangzhou, South China 

  112. Build Environ Zhou 121 26 2017 10.1016/j.buildenv.2017.04.013 Combined effects of temperature and humidity on indoor VOCs pollution: intercity comparison 

  113. Environ Res Billionnet 111 425 2011 10.1016/j.envres.2011.02.008 Quantitative assessments of indoor air pollution and respiratory health in a population-based sample of French dwellings 

  114. Indoor Built Environ Ye 26 166 2017 10.1177/1420326X16660601 A practical method and its applications to prioritize volatile organic compounds emitted from building materials based on ventilation rate requirements and ozone-initiated reactions 

  115. Build Simul Liang 5 351 2012 10.1007/s12273-012-0083-6 Modeling volatile organic compound (VOC) concentrations due to material emissions in a real residential unit. Part I: methodology and a preliminary case study 

  116. Indoor Air, Supplement Seppanen 14 102 2004 10.1111/j.1600-0668.2004.00279.x Summary of human responses to ventilation 

  117. Fisk 361 2003 Proceedings of the Healthy Buildings 2003 Conference, December 7-11, 2003 Economizer system cost effectiveness: accounting for the influence of ventilation rate on sick leave 

  118. Am J Respir Crit Care Med Nardell 144 302 1991 Airborne infection: theoretical limits of protection achievable by building ventilation 

  119. Build Environ Chen 146 238 2018 10.1016/j.buildenv.2018.09.054 Time series prediction of CO2, TVOC and HCHO based on machine learning at different sampling points 

  120. Energy Build Shan 197 188 2019 10.1016/j.enbuild.2019.05.055 Neural-signal electroencephalogram (EEG) methods to improve human-building interaction under different indoor air quality 

  121. Renew Sustain Energy Rev Machairas 31 101 2014 10.1016/j.rser.2013.11.036 Algorithms for optimization of building design: a review 

  122. Appl Therm Eng Ayata 27 12 2007 10.1016/j.applthermaleng.2006.05.021 Application of ANN to explore the potential use of natural ventilation in buildings in Turkey 

  123. Build Environ Daum 46 3 2011 10.1016/j.buildenv.2010.06.011 A personalized measure of thermal comfort for building controls 

  124. Build Environ Cheung 115 80 2017 10.1016/j.buildenv.2017.01.014 Longitudinal assessment of thermal and perceived air quality acceptability in relation to temperature, humidity, and CO2 exposure in Singapore 

  125. Barrett 3 2015 Machine learning and knowledge discovery in databases Autonomous HVAC control, A reinforcement learning approach 

  126. Energy Build Chen 169 195 2018 10.1016/j.enbuild.2018.03.051 Optimal control of HVAC and window systems for natural ventilation through reinforcement learning 

  127. Renew Sustain Energy Rev Tian 93 285 2018 10.1016/j.rser.2018.05.029 A review of uncertainty analysis in building energy assessment 

  128. Goodfellow 2016 Deep learning 

  129. Atmos Pollut Res Elbayoumi 6 1013 2015 10.1016/j.apr.2015.09.001 Development and comparison of regression models and feedforward backpropagation neural network models to predict seasonal indoor PM2.5-10 and PM2.5 concentrations in naturally ventilated schools 

  130. Energy Build Mba 121 32 2016 10.1016/j.enbuild.2016.03.046 Application of artificial neural network for predicting hourly indoor air temperature and relative humidity in modern building in humid region 

  131. Build Environ Moon 61 149 2013 10.1016/j.buildenv.2012.12.010 Development of an artificial neural network model based thermal control logic for double skin envelopes in winter 

  132. Energy Build Moon 127 859 2016 10.1016/j.enbuild.2016.06.046 Algorithm for optimal application of the setback moment in the heating season using an artificial neural network model 

  133. Energy Build Ashtiani 76 597 2014 10.1016/j.enbuild.2014.03.018 Indoor thermal condition in urban heat island: comparison of the artificial neural network and regression methods prediction 

  134. Energy Build Mustafaraj 43 1452 2011 10.1016/j.enbuild.2011.02.007 Prediction of room temperature and relative humidity by autoregressive linear and nonlinear neural network models for an open office 

  135. Neural Comput Appl Lu 18 345 2008 10.1007/s00521-008-0185-3 Prediction of indoor temperature and relative humidity using neural network models: model comparison 

  136. Indoor Built Environ Ozbalta 21 772 2012 10.1177/1420326X11422163 Models for prediction of daily mean indoor temperature and relative humidity: education building in Izmir, Turkey 

  137. Build Eng Zhang 111 53 2005 Neural-based air-handling unit for indoor relative humidity and temperature control 

  138. Build Environ Kim 82 328 2014 10.1016/j.buildenv.2014.08.031 Performance evaluation of artificial neural network-based variable control logic for double skin enveloped buildings during the heating season 

  139. Energies Moon 6 4223 2013 10.3390/en6084223 Optimum application of thermal factors to artificial neural network models for improvement of control performance in double skin-enveloped buildings 

  140. Build Environ Moon 45 1612 2010 10.1016/j.buildenv.2010.01.009 ANN-based thermal control models for residential buildings 

  141. Energy Build Liu 39 1115 2007 10.1016/j.enbuild.2006.12.005 A neural network evaluation model for individual thermal comfort 

  142. Build Environ Zhou 44 657 2009 10.1016/j.buildenv.2008.05.010 Optimization of ventilation systems in office environment, Part II: results and discussions 

  143. Appl Therm Eng Escandon 150 492 2019 10.1016/j.applthermaleng.2019.01.013 Thermal comfort prediction in a building category: artificial neural network generation from calibrated models for a social housing stock in southern Europe 

  144. Sustainability Buratti 6 5339 2014 10.3390/su6085339 Building behavior simulation by means of artificial neural network in summer conditions 

  145. Energy Build Deng 174 587 2018 10.1016/j.enbuild.2018.06.060 Artificial neural network models using thermal sensations and occupants' behavior for predicting thermal comfort 

  146. Energy Procedia Buratti 78 2875 2015 10.1016/j.egypro.2015.11.656 Thermal comfort evaluation within non-residential environments: development of artificial neural network by using the adaptive approach data 

  147. Build Environ Sofuoglu 43 1121 2008 10.1016/j.buildenv.2007.03.003 Application of artificial neural networks to predict prevalence of building-related symptoms in office buildings 

  148. Appl Energy von Grabe 161 412 2016 10.1016/j.apenergy.2015.10.061 Potential of artificial neural networks to predict thermal sensation votes 

  149. Appl Energy Li 91 290 2012 10.1016/j.apenergy.2011.09.037 Dynamic modeling and control of a direct expansion air conditioning system using artificial neural network 

  150. Energy Build Huang 97 86 2015 10.1016/j.enbuild.2015.03.045 A neural network-based multi-zone modelling approach for predictive control system design in commercial buildings 

  151. J Process Contr Garnier 24 750 2014 10.1016/j.jprocont.2013.10.005 Low computational cost technique for predictive management of thermal comfort in non-residential buildings 

  152. Build Environ Spindler 44 736 2009 10.1016/j.buildenv.2008.05.019 Naturally ventilated and mixed-mode buildings-Part I: thermal modeling 

  153. Build Environ Dai 159 2019 10.1016/j.buildenv.2019.05.017 An artificial neural network model using outdoor environmental parameters and residential building characteristics for predicting the nighttime natural ventilation effect 

  154. Int J Environ Res Publ Health Challoner 12 15233 2015 10.3390/ijerph121214975 Prediction of indoor air exposure from outdoor air quality using an artificial neural network model for inner city commercial buildings 

  155. Nucl Sci Tech Gheziel 28 5 2016 10.1007/s41365-016-0159-6 Particle dispersion modeling in ventilated room using artificial neural network 

  156. Int J Environ Res Publ Health Liu 14 857 2017 10.3390/ijerph14080857 Quick estimation model for the concentration of indoor airborne culturable bacteria: an application of machine learning 

  157. Energy Ascione 118 999 2017 10.1016/j.energy.2016.10.126 Artificial neural networks to predict energy performance and retrofit scenarios for any member of a building category: a novel approach 

  158. Energy Build Asadi 81 444 2014 10.1016/j.enbuild.2014.06.009 Multi-objective optimization for building retrofit: a model using genetic algorithm and artificial neural network and an application 

  159. Build Environ Stavrakakis 45 65 2010 10.1016/j.buildenv.2009.05.006 Development of a computational tool to quantify architectural-design effects on thermal comfort in naturally ventilated rural houses 

  160. Appl Therm Eng Moon 103 1135 2016 10.1016/j.applthermaleng.2016.05.002 Development of a thermal control algorithm using artificial neural network models for improved thermal comfort and energy efficiency in accommodation buildings 

  161. Sustainable Energy Technologies and Assessments Nasruddin 35 48 2019 10.1016/j.seta.2019.06.002 Optimization of HVAC system energy consumption in a building using artificial neural network and multi-objective genetic algorithm 

  162. Energies Zamora-Martinez 6 4639 2013 10.3390/en6094639 Towards energy efficiency: forecasting indoor temperature via multivariate analysis 

  163. Build Environ Moon 48 15 2012 10.1016/j.buildenv.2011.06.005 Performance of ANN-based predictive and adaptive thermal-control methods for disturbances in and around residential buildings 

  164. Sutton 2018 Reinforcement learning: an introduction 

  165. Q-learning. Machine learning. Watkins 8 279 1992 

  166. Contr Eng Pract Yu 18 532 2010 10.1016/j.conengprac.2010.01.018 Online tuning of a supervisory fuzzy controller for low-energy building system using reinforcement learning 

  167. Build Environ Valladares 155 105 2019 10.1016/j.buildenv.2019.03.038 Energy optimization associated with thermal comfort and indoor air control via a deep reinforcement learning algorithm 

  168. Energy Build de Gracia 106 234 2015 10.1016/j.enbuild.2015.06.045 Control of a PCM ventilated facade using reinforcement learning techniques 

  169. Build Environ Lu 156 137 2019 10.1016/j.buildenv.2019.03.010 Data-driven simulation of a thermal comfort-based temperature set-point control with ASHRAE RP884 

  170. BMC Med Inform Decis Yu 19 2019 10.1186/s12911-019-0763-6 Inverse reinforcement learning for intelligent mechanical ventilation and sedative dosing in intensive care units 

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로