$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Tyrosine phosphatase SHP2 inhibitors in tumor-targeted therapies 원문보기

Acta pharmaceutica Sinica. B, v.11 no.1, 2021년, pp.13 - 29  

Song, Zhendong (Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University) ,  Wang, Meijing (State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University) ,  Ge, Yang (Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University) ,  Chen, Xue-Ping (Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University) ,  Xu, Ziyang (State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University) ,  Sun, Yang (State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University) ,  Xiong, Xiao-Feng (Guangdo)

Abstract AI-Helper 아이콘AI-Helper

Abstract Src homology containing protein tyrosine phosphatase 2 (SHP2) represents a noteworthy target for various diseases, serving as a well-known oncogenic phosphatase in cancers. As a result of the low cell permeability and poor bioavailability, the traditional inhibitors targeting the protein t...

주제어

참고문헌 (100)

  1. 1 Frankson R. Yu Z. Bai Y. Li Q. Zhang R. Zhang Z. Therapeutic targeting of oncogenic tyrosine phosphatases Canc Res 77 2017 5701 5705 

  2. 2 Tonks N.K. Protein tyrosine phosphatases: from genes, to function, to disease Nat Rev Mol Cell Biol 7 2006 833 846 17057753 

  3. 3 Hooft van Huijsduijnen R. Bombrun A. Swinnen D. Selecting protein tyrosine phosphatases as drug targets Drug Discov Today 7 2002 1013 1019 12546919 

  4. 4 Hunter T. Tyrosine phosphorylation: thirty years and counting Curr Opin Cell Biol 21 2009 140 146 19269802 

  5. 5 Ferguson F.M. Gray N.S. Kinase inhibitors: the road ahead Nat Rev Drug Discov 17 2018 353 377 29545548 

  6. 6 Bentires-Alj M. Paez J.G. David F.S. Keilhack H. Halmos B. Naoki K. Activating mutations of the noonan syndrome-associated SHP2/PTPN11 gene in human solid tumors and adult acute myelogenous leukemia Canc Res 64 2004 8816 8820 

  7. 7 Cheng Y. Chiu H. Hsiao T. Hsiao C. Lin C. Liao Y. Scalp melanoma in a woman with LEOPARD syndrome: possible implication of PTPN11 signalling in melanoma pathogenesis J Am Acad Dermatol 69 2013 e186?7 24034393 

  8. 8 Neel B.G. Gu H. Pao L. The ‘Shp’ing news: SH2 domain-containing tyrosine phosphatases in cell signalling Trends Biochem Sci 28 2003 284 293 12826400 

  9. 9 Xu D. Qu C. Protein tyrosine phosphatases in the JAK/STAT pathway Front Biosci 13 2008 4925 4932 18508557 

  10. 10 Li J. Jie H. Lei Y. Gildener-Leapman N. Trivedi S. Green T. PD-1/SHP-2 inhibits Tc1/Th1 phenotypic responses and the activation of T cells in the tumor microenvironment Canc Res 75 2015 508 518 

  11. 11 Hui E. Cheung J. Zhu J. Su X. Taylor M.J. Wallweber H.A. T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition Science 355 2017 1428 1433 28280247 

  12. 12 Guo W. Liu W. Chen Z. Gu Y. Peng S. Shen L. Tyrosine phosphatase SHP2 negatively regulates NLRP3 inflammasome activation via ANT1-dependent mitochondrial homeostasis Nat Commun 8 2017 2168 29255148 

  13. 13 He R. Zeng L. He Y. Zhang S. Zhang Z. Small molecule tools for functional interrogation of protein tyrosine phosphatases FEBS J 280 2013 731 750 22816879 

  14. 14 Hof P. Pluskey S. Dhe-Paganon S. Eck M.J. Shoelson S.E. Crystal?structure of the tyrosine phosphatase SHP-2 Cell 92 1998 441 450 9491886 

  15. 15 Pluskey S. Wandless T.J. Walsh C.T. Shoelson S.E. Potent stimulation of SH-PTP2 phosphatase activity by simultaneous occupancy of both SH2 domains J Biol Chem 270 1995 2897 2900 7531695 

  16. 16 Gavrieli M. Watanabe N. Loftin S.K. Murphy T.L. Murphy K.M. Characterization of phosphotyrosine binding motifs in the cytoplasmic domain of B and T lymphocyte attenuator required for association with protein tyrosine phosphatases SHP-1 and SHP-2 Biochem Biophys Res Commun 312 2003 1236 1243 14652006 

  17. 17 Yokosuka T. Takamatsu M. Kobayashiimanishi W. Hashimototane A. Azuma M. Saito T. Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signalling by recruiting phosphatase SHP2 J Exp Med 209 2012 1201 1217 22641383 

  18. 18 Chemnitz J.M. Parry R.V. Nichols K.E. June C.H. Riley J.L. SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation J Immunol 173 2004 945 954 15240681 

  19. 19 Topalian S.L. Hodi F.S. Brahmer J.R. Gettinger S.N. Smith D.C. McDermott D.F. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer N Engl J Med 366 2012 2443 2454 22658127 

  20. 20 Butterworth S. Overduin M. Barr A.J. Targeting protein tyrosine phosphatase SHP2 for therapeutic intervention Future Med Chem 6 2014 1423 1437 25329198 

  21. 21 Zhao M. Guo W. Wu Y. Yang C. Zhong L. Deng G. SHP2 inhibition triggers anti-tumor immunity and synergizes with PD-1 blockade Acta Pharm Sin B 9 2019 304 315 30972278 

  22. 22 Loh M.L. Vattikuti S. Schubbert S. Reynolds M.G. Carlson E. Lieuw K.H. Mutations in PTPN11 implicate the SHP-2 phosphatase in leukemogenesis Blood 103 2004 2325 2331 14644997 

  23. 23 Tartaglia M. Martinelli S. Cazzaniga G. Cordeddu V. Iavarone I. Spinelli M. Genetic evidence for lineage-related and differentiation stage-related contribution of somatic PTPN11 mutations to leukemogenesis in childhood acute leukemia Blood 104 2004 307 313 14982869 

  24. 24 Loh M.L. Reynolds M.G. Vattikuti S. Gerbing R.B. Alonzo T.A. Carlson E. PTPN11 mutations in pediatric patients with acute myeloid leukemia: results from the Children's Cancer Group Leukemia 18 2004 1831 1834 15385933 

  25. 25 Tartaglia M. Niemeyer C.M. Fragale A. Song X. Buechner J. Jung A. Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia Nat Genet 34 2003 148 150 12717436 

  26. 26 Tartaglia M. Mehler E.L. Goldberg R. Zampino G. Brunner H.G. Kremer H. Mutations in PTPN11 , encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome Nat Genet 29 2001 465 468 11704759 

  27. 27 Mohi M.G. Neel B.G. The role of Shp2 ( PTPN11 ) in cancer Curr Opin Genet Dev 17 2007 23 30 17227708 

  28. 28 Liu Q. Qu J. Zhao M. Xu Q. Sun Y. Targeting SHP2 as a promising strategy for cancer immunotherapy Pharmacol Res 152 2020 104595 31838080 

  29. 29 Grossmann K.S. Rosario M. Birchmeier C. Birchmeier W. The tyrosine phosphatase Shp2 in development and cancer Adv Canc Res 106 2010 53 89 

  30. 30 Pardoll D.M. The blockade of immune checkpoints in cancer immunotherapy Nat Rev Canc 12 2012 252 264 

  31. 31 Rota G. Charlene N. Dang A.T. Barros C.R. Fonta N.P. Alfei F. Shp-2 is dispensable for establishing T cell exhaustion and for PD-1 signalling in?vivo Cell Rep 23 2018 39 49 29617671 

  32. 32 Wang L. Iorio C. Yan K. Yang H. Takeshita S. Kang S. A ERK/RSK-mediated negative feedback loop regulates M-CSF-evoked PI3K/AKT activation in macrophages Faseb J 32 2018 875 887 29046360 

  33. 33 Achkova D. Maher J. Role of the colony-stimulating factor (CSF)/CSF-1 receptor axis in cancer Biochem Soc Trans 44 2016 333 341 27068937 

  34. 34 Rehman A.U. Rahman M.U. Khan M.T. Saud S. Liu H. Song D. The landscape of protein tyrosine phosphatase (Shp2) and cancer Curr Pharmaceut Des 24 2018 3767 3777 

  35. 35 Liu F. Yang X. Geng M. Huang M. Targeting ERK, an Achilles' heel of the MAPK pathway, in cancer therapy Acta Pharm Sin B 8 2018 552 562 30109180 

  36. 36 He R. Yu Z. Zhang R. Zhang Z. Protein tyrosine phosphatases as potential therapeutic targets Acta Pharmacol Sin 35 2014 1227 1246 25220640 

  37. 37 Pandey R. Ramdas B. Wan C. Sandusky G. Mohseni M. Zhang C. SHP2 inhibition reduces leukemogenesis in models of combined genetic and epigenetic mutations J Clin Invest 129 2019 5468 5473 31682240 

  38. 38 Richine B.M. Virts E.L. Bowling J.D. Ramdas B. Mali R. Naoye R. Syk kinase and Shp2 phosphatase inhibition cooperate to reduce FLT3-ITD-induced STAT5 activation and proliferation of acute myeloid leukemia Leukemia 30 2016 2094 2097 27256702 

  39. 39 Gu S. Sayad A. Chan G. Yang W. Lu Z. Virtanen C. SHP2 is required for BCR-ABL1-induced hematologic neoplasia Leukemia 32 2018 203 213 28804122 

  40. 40 Mainardi S. Mulero-Sanchez A. Prahallad A. Germano G. Bosma A. Krimpenfort P. SHP2 is required for growth of KRAS -mutant non-small-cell lung cancer in?vivo Nat Med 24 2018 961 967 29808006 

  41. 41 Ruess D.A. Heynen G.J. Ciecielski K.J. Ai J. Berninger A. Kabacaoglu D. Mutant KRAS -driven cancers depend on PTPN11 /SHP2 phosphatase Nat Med 24 2018 954 960 29808009 

  42. 42 Dardaei L. Wang H. Singh M. Fordjour P. Shaw K.X. Yoda S. SHP2 inhibition restores sensitivity in ALK-rearranged non-small-cell lung cancer resistant to ALK inhibitors Nat Med 24 2018 512 517 29505033 

  43. 43 Jiang L. Xu W. Chen Y. Zhang Y. SHP2 inhibitor specifically suppresses the stemness of KRAS -mutant non-small cell lung cancer cells Artif Cells Nanomed Biotechnol 47 2019 3231 3238 31373232 

  44. 44 Wong G.S. Zhou J. Liu J.B. Wu Z. Xu X. Li T. Targeting wild-type KRAS -amplified gastroesophageal cancer through combined MEK and SHP2 inhibition Nat Med 24 2018 968 977 29808010 

  45. 45 Zhou X. Coad J. Ducatman B. Agazie Y.M. SHP2 is up-regulated in breast cancer cells and in infiltrating ductal carcinoma of the breast, implying its involvement in breast oncogenesis Histopathology 53 2008 389 402 18643929 

  46. 46 Aceto N. Sausgruber N. Brinkhaus H. Gaidatzis D. Martiny-Baron G. Mazzarol G. Tyrosine phosphatase SHP2 promotes breast cancer progression and maintains tumor-initiating cells via activation of key transcription factors and a positive feedback signalling loop Nat Med 18 2012 529 537 22388088 

  47. 47 Matalkah F. Martin E. Zhao H. Agazie Y.M. SHP2 acts both upstream and downstream of multiple receptor tyrosine kinases to promote basal-like and triple-negative breast cancer Breast Cancer Res 18 2016 2 26728598 

  48. 48 Zhao H. Martin E. Matalkah F. Shah N. Ivanov A. Ruppert J.M. Conditional knockout of SHP2 in ErbB2 transgenic mice or inhibition in HER2-amplified breast cancer cell lines blocks oncogene expression and tumorigenesis Oncogene 38 2019 2275 2290 30467378 

  49. 49 Zheng J. Huang S. Huang Y. Song L. Yin L. Kong W. Expression and prognosis value of SHP2 in patients with pancreatic ductal adenocarcinoma Tumour Biol 37 2016 7853 7859 26695153 

  50. 50 Chen Y. LaMarche M.J. Chan H. Fekkes P. Garcia-Fortanet J. Acker M.G. Allosteric inhibition of SHP2 phosphatase inhibits cancers driven by receptor tyrosine kinases Nature 535 2016 148 152 27362227 

  51. 51 Garcia Fortanet J. Chen C. Chen Y. Chen Z. Deng Z. Firestone B. Allosteric inhibition of SHP2: identification of a potent, selective, and orally efficacious phosphatase inhibitor J Med Chem 59 2016 7773 7782 27347692 

  52. 52 Hellmuth K. Grosskopf S. Lum C.T. Wurtele M. Roder N. von Kries J.P. Specific inhibitors of the protein tyrosine phosphatase Shp2 identified by high-throughput docking Proc Natl Acad Sci U S A 105 2008 7275 7280 18480264 

  53. 53 Iversen L.F. Andersen H.S. Møller K.B. Olsen O.H. Peters G.H. Branner S. Steric hindrance as a basis for structure-based design of selective inhibitors of protein-tyrosine phosphatases Biochemist 40 2001 14812 14820 

  54. 54 Guo X. Shen K. Wang F. Lawrence D.S. Zhang Z. Probing the molecular basis for potent and selective protein-tyrosine phosphatase 1B inhibition J Biol Chem 277 2002 41014 41022 12193602 

  55. 55 Grosskopf S. Eckert C. Arkona C. Radetzki S. Bohm K. Heinemann U. Selective inhibitors of the protein tyrosine phosphatase SHP2 block cellular motility and growth of cancer cells in?vitro and in?vivo ChemMedChem 10 2015 815 826 25877780 

  56. 56 Chen L. Sung S.S. Yip M.L. Lawrence H.R. Ren Y. Guida W.C. Discovery of a novel Shp2 protein tyrosine phosphatase inhibitor Mol Pharmacol 70 2006 562 570 16717135 

  57. 57 Andersen J.N. Mortensen O.H. Peters G.H. Drake P.G. Iversen L.F. Olsen O.H. Structural and evolutionary relationships among protein tyrosine phosphatase domains Mol Cell Biol 21 2001 7117 7136 11585896 

  58. 58 Song M. Park J.E. Park S.G. Lee D.H. Choi H.K. Park B.C. NSC-87877, inhibitor of SHP-1/2 PTPs, inhibits dual-specificity phosphatase 26 (DUSP26) Biochem Biophys Res Commun 381 2009 491 495 19233143 

  59. 59 Lawrence H.R. Pireddu R. Chen L. Luo Y. Sung S.S. Szymanski A.M. Inhibitors of Src homology-2 domain containing protein tyrosine phosphatase-2 (Shp2) based on oxindole scaffolds J Med Chem 51 2008 4948 4956 18680359 

  60. 60 Milne G.W. Feldman A. Miller J.A. Daly G.P. Hammel M.J. The NCI drug information system. 2. DIS pre-registry J Chem Inf Comput Sci 26 1986 159 168 3818816 

  61. 61 Chen L. Pernazza D. Scott L.M. Lawrence H.R. Ren Y. Luo Y. Inhibition of cellular Shp2 activity by a methyl ester analog of SPI-112 Biochem Pharmacol 80 2010 801 810 20510203 

  62. 62 Sarmiento M. Wu L. Keng Y.F. Song L. Luo Z. Huang Z. Structure-based discovery of small molecule inhibitors targeted to protein tyrosine phosphatase 1B J Med Chem 43 2000 146 155 10649970 

  63. 63 Liang F. Huang Z. Lee S.Y. Liang J. Ivanov M.I. Alonso A. Aurintricarboxylic acid blocks in?vitro and in?vivo activity of YopH, an essential virulent factor of Yersinia pestis , the agent of plague J Biol Chem 278 2003 41734 41741 12888560 

  64. 64 Zhang X. He Y. Liu S. Yu Z. Jiang Z. Yang Z. Salicylic acid based small molecule inhibitor for the oncogenic Src homology-2 domain containing protein tyrosine phosphatase-2 (SHP2) J Med Chem 53 2010 2482 2493 20170098 

  65. 65 Xu J. Zeng L. Shen W. Turchi J.J. Zhang Z. Targeting SHP2 for EGFR inhibitor resistant non-small cell lung carcinoma Biochem Biophys Res Commun 439 2013 586 590 24041688 

  66. 66 Liu W. Yu B. Xu G. Xu W. Loh M.L. Tang L. Identification of cryptotanshinone as an inhibitor of oncogenic protein tyrosine phosphatase SHP2 ( PTPN11 ) J Med Chem 56 2013 7212 7221 23957426 

  67. 67 Zhou L. Zuo Z. Chow M. Danshen: an overview of its chemistry, pharmacology, pharmacokinetics, and clinical use J Clin Pharmacol 45 2005 1345 1359 16291709 

  68. 68 Lu Y. Foo L.Y. Polyphenolics of Salvia ―a review Phytochemistry 59 2002 117 140 11809447 

  69. 69 Stickel F. Brinkhaus B. Krahmer N. Seitz H.K. Hahn E.G. Schuppan D. Antifibrotic properties of botanicals in chronic liver disease Hepatogastroenterology 49 2002 1102 1108 12143213 

  70. 70 Wojcikowski K. Johnson D.W. Gobe G. Herbs or natural substances as complementary therapies for chronic kidney disease: ideas for future studies J Lab Clin Med 147 2006 160 166 16581343 

  71. 71 Yu X. Lin S. Chen X. Zhou Z. Liang J. Duan W. Transport of cryptotanshinone, a major active triterpenoid in Salvia miltiorrhiza Bunge widely used in the treatment of stroke and Alzheimer's disease, across the blood?brain barrier Curr Drug Metabol 8 2007 365 378 

  72. 72 Wu D. Pang Y. Ke Y. Yu J. He Z. Tautz L. A conserved mechanism for control of human and mouse embryonic stem cell pluripotency and differentiation by Shp2 tyrosine phosphatase PLoS One 4 2009 e4914 

  73. 73 Yu W. Guvench O. Mackerell A.D. Qu C. Identification of small molecular weight inhibitors of Src homology 2 domain-containing tyrosine phosphatase 2 (SHP-2) via in silico database screening combined with experimental assay J Med Chem 51 2008 7396 7404 19007293 

  74. 74 Yu B. Liu W. Yu W. Loh M.L. Alter S. Guvench O. Targeting protein tyrosine phosphatase SHP2 for the treatment of PTPN11 -associated malignancies Mol Canc Therapeut 12 2013 1738 1748 

  75. 75 Scott L.M. Chen L. Daniel K.G. Brooks W.H. Guida W.C. Lawrence H.R. Shp2 protein tyrosine phosphatase inhibitor activity of estramustine phosphate and its triterpenoid analogs Bioorg Med Chem Lett 21 2011 730 733 21193311 

  76. 76 Gee K.R. Sun W. Bhalgat M.K. Upson R.H. Klaubert D.H. Latham K.A. Fluorogenic substrates based on fluorinated umbelliferones for continuous assays of phosphatases and β -galactosidases Anal Biochem 273 1999 41 48 10452797 

  77. 77 Clare J.J. Tate S.N. Nobbs M. Romanos M.A. Voltage-gated sodium?channels as therapeutic targets Drug Discov Today 5 2000 506 520 11084387 

  78. 78 Large C.H. Kalinichev M. Lucas A. Carignani C. Bradford A. Garbati N. The relationship between sodium channel inhibition and anticonvulsant activity in a model of generalised seizure in the rat Epilepsy Res 85 2009 96 106 19329281 

  79. 79 Halgren T. Identifying and characterizing binding sites and assessing druggability J Chem Inf Model 49 2009 377 389 19434839 

  80. 80 Halgren T. New method for fast and accurate binding-site identification and analysis Chem Biol Drug Des 69 2007 146 148 17381729 

  81. 81 Schrodinger release 2017?2: Maestro, Schrodinger LLC., New York, NY, USA. 

  82. 82 Fodor M. Price E. Wang P. Lu H. Argintaru A. Chen Z. Dual allosteric inhibition of SHP2 phosphatase ACS Chem Biol 13 2018 647 656 29304282 

  83. 83 Bagdanoff J.T. Chen Z. Acker M. Chen Y. Chan H. Dore M. Optimization of fused bicyclic allosteric SHP2 inhibitors J Med Chem 62 2019 1781 1792 30688462 

  84. 84 Sarver P. Acker M. Bagdanoff J.T. Chen Z. Chen Y. Chan H. 6-Amino-3-methylpyrimidinones as potent, selective, and orally efficacious SHP2 inhibitors J Med Chem 62 2019 1793 1802 30688459 

  85. 85 Hao H, Li F, Lamarche MJ, Wang H, Dardaei-Alghalandis L, Engelman JA, inventors. Novartis, assignee. Pharmaceutical combination comprising an ALK inhibitor and a SHP2 inhibitor. 19 July 2018. PCT patent WO2018130928 A1. 

  86. 86 Sun X. Ren Y. Gunawan S. Teng P. Chen Z. Lawrence H.R. Selective inhibition of leukemia-associated SHP2 E69K mutant by the allosteric SHP2 inhibitor SHP099 Leukemia 32 2018 1246 1249 29568093 

  87. 87 Hanafusa H. Torii S. Yasunaga T. Matsumoto K. Nishida E. Shp2, an SH2-containing protein-tyrosine phosphatase, positively regulates receptor tyrosine kinase signalling by dephosphorylating and inactivating the inhibitor Sprouty J Biol Chem 279 2004 22992 22995 15031289 

  88. 88 Xie J. Si X. Gu S. Wang M. Shen J. Li H. Allosteric inhibitors of SHP2 with therapeutic potential for cancer treatment J Med Chem 60 2017 10205 10219 29155585 

  89. 89 Wu X. Xu G. Li X. Xu W. Li Q. Liu W. Small molecule inhibitor that stabilizes the autoinhibited conformation of the oncogenic tyrosine phosphatase SHP2 J Med Chem 62 2019 1125 1137 30457860 

  90. 90 Nichols R.J. Haderk F. Stahlhut C. Schulze C.J. Hemmati G. Wildes D. RAS nucleotide cycling underlies the SHP2 phosphatase dependence of mutant BRAF-, NF1- and RAS-driven cancers Nat Cell Biol 20 2018 1064 1073 30104724 

  91. 91 Brennan M.A. Jesse M.F. Samuel K. Bailey A.P. Anthony C.B. The allosteric site on SHP2's protein tyrosine phosphatase domain is targetable with druglike small molecules ACS Omega 3 2018 15763 15770 30533581 

  92. 92 Mirati Therapeutics, Inc Mirati announces clinical collaboration to evaluate MRTX849 in combination with SHP2 inhibitor TNO155 09 July 2019 Available from: https://ir.mirati.com/news-releases/news-details/2019/Mirati-Announces-Clinical-Collaboration-to-Evaluate-MRTX849-in-Combination-with-SHP2-Inhibitor-TNO155/default.aspx?from=singlemessage 

  93. 93 Novartis Pharmaceuticals Dose finding study of TNO155 in adult patients with advanced solid tumors ClinicalTrails.gov 14 April 2017 Available from: https://www.clinicaltrials.gov/ct2/show/NCT03114319 

  94. 94 Novartis Pharmaceuticals Phase Ib study of TNO155 in combination with spartalizumab or ribociclib in selected malignancies ClinicalTrails.gov 27 June 2019 Available from: https://www.clinicaltrials.gov/ct2/show/NCT04000529 

  95. 95 Revolution Medicines, Inc Dose escalation of RMC-4630 monotherapy in relapsed/refractory solid tumors ClinicalTrails.gov 17 August 2018 Available from: https://www.clinicaltrials.gov/ct2/show/NCT03634982 

  96. 96 Revolution Medicines, Inc Dose-escalation and dose-expansion of RMC-4630 and cobimetinib in relapsed/refractory solid tumors ClinicalTrails.gov 18 June 2019 Available from: https://www.clinicaltrials.gov/ct2/show/NCT03989115 

  97. 97 Jacobio Pharmaceuticals Co., Ltd A first in human, dose escalation study of JAB-3068 (SHP2 Inhibitor) in adult patients with advanced solid tumors ClinicalTrails.gov 8 May 2018 Available from: https://www.clinicaltrials.gov/ct2/show/NCT03518554 

  98. 98 Jacobio Pharmaceuticals Co., Ltd A first-in-human study of JAB-3068 (SHP2 Inhibitor) in adult patients with advanced solid tumors in China ClinicalTrails.gov 21 June 2018 Available from: https://www.clinicaltrials.gov/ct2/show/NCT03565003 

  99. 99 Jacobio Pharmaceuticals Co., Ltd A first-in-human, phase 1 study of JAB-3312 in adult patients with advanced solid tumors ClinicalTrails.gov 5 August 2019 Available from: https://www.clinicaltrials.gov/ct2/show/NCT04045496 

  100. 100 Luo X. Liao R. Hanley K.L. Zhu H.H. Malo K.N. Hernandez C. Dual Shp2 and Pten deficiencies promote non-alcoholic steatohepatitis and genesis of liver tumor-initiating cells Cell Rep 17 2016 2979 2993 27974211 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로