$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Microautophagy regulates proteasome homeostasis 원문보기

Current genetics, v.66 no.4, 2020년, pp.683 - 687  

Li, Jianhui ,  Hochstrasser, Mark

초록이 없습니다.

참고문헌 (32)

  1. J Biol Chem A Adachi 292 19905 2017 10.1074/jbc.M117.817510 Adachi A, Koizumi M, Ohsumi Y (2017) Autophagy induction under carbon starvation conditions is negatively regulated by carbon catabolite repression. J Biol Chem 292:19905-19918. https://doi.org/10.1074/jbc.M117.817510 

  2. J Mol Biol L Budenholzer 429 3500 2017 10.1016/j.jmb.2017.05.027 Budenholzer L, Cheng CL, Li Y, Hochstrasser M (2017) Proteasome structure and assembly. J Mol Biol 429:3500-3524. https://doi.org/10.1016/j.jmb.2017.05.027 

  3. Eur J Biochem AM Cuervo 227 792 1995 10.1111/j.1432-1033.1995.0792p.x Cuervo AM, Palmer A, Rivett AJ, Knecht E (1995) Degradation of proteasomes by lysosomes in rat liver. Eur J Biochem 227:792-800. https://doi.org/10.1111/j.1432-1033.1995.0792p.x 

  4. BBA-Mol Cell Res C Enenkel 1843 39 2014 10.1016/j.bbamcr.2013.03.023 Enenkel C (2014) Proteasome dynamics. BBA-Mol Cell Res 1843:39-46. https://doi.org/10.1016/j.bbamcr.2013.03.023 

  5. Curr Genet C Enenkel 64 137 2018 10.1007/s00294-017-0739-y Enenkel C (2018) The paradox of proteasome granules. Curr Genet 64:137-140. https://doi.org/10.1007/s00294-017-0739-y 

  6. Curr Genet D Gatica 65 847 2019 10.1007/s00294-019-00943-5 Gatica D, Klionsky DJ (2019) Towards understanding mRNA-binding protein specificity: lessons from post-transcriptional regulation of ATG mRNA during nitrogen starvation-induced autophagy. Curr Genet 65:847-849. https://doi.org/10.1007/s00294-019-00943-5 

  7. Nat Cell Biol D Gatica 20 233 2018 10.1038/s41556-018-0037-z Gatica D, Lahiri V, Klionsky DJ (2018) Cargo recognition and degradation by selective autophagy. Nat Cell Biol 20:233-242. https://doi.org/10.1038/s41556-018-0037-z 

  8. Cell Syst B Ho 6 192 2018 10.1016/j.cels.2017.12.004 Ho B, Baryshnikova A, Brown GW (2018) Unification of protein abundance datasets yields a quantitative Saccharomyces cerevisiae proteome. Cell Syst 6:192-205.e193. https://doi.org/10.1016/j.cels.2017.12.004 

  9. J Biol Chem R Iwama 294 5590 2019 10.1074/jbc.RA118.005698 Iwama R, Ohsumi Y (2019) Analysis of autophagy activated during changes in carbon source availability in yeast cells. J Biol Chem 294:5590-5603. https://doi.org/10.1074/jbc.RA118.005698 

  10. Front Mol Biosci O Karmon 2020 10.3389/fmolb.2019.00150 Karmon O, Ben Aroya S (2020) Spatial organization of proteasome aggregates in the regulation of proteasome homeostasis. Front Mol Biosci. https://doi.org/10.3389/fmolb.2019.00150 

  11. Curr Genet Z Kuang 64 807 2018 10.1007/s00294-018-0813-0 Kuang Z, Ji H, Boeke JD (2018) Stress response factors drive regrowth of quiescent cells. Curr Genet 64:807-810. https://doi.org/10.1007/s00294-018-0813-0 

  12. J Cell Biol D Laporte 181 737 2008 10.1083/jcb.200711154 Laporte D, Salin B, Daignan-Fornier B, Sagot I (2008) Reversible cytoplasmic localization of the proteasome in quiescent yeast cells. J Cell Biol 181:737-745. https://doi.org/10.1083/jcb.200711154 

  13. Cell Mol Life Sci W-W Li 69 1125 2012 10.1007/s00018-011-0865-5 Li W-W, Li J, Bao J-K (2012) Microautophagy: lesser-known self-eating. Cell Mol Life Sci 69:1125-1136. https://doi.org/10.1007/s00018-011-0865-5 

  14. PLoS Genet J Li 15 e1008387 2019 10.1371/journal.pgen.1008387 Li J, Breker M, Graham M, Schuldiner M, Hochstrasser M (2019) AMPK regulates ESCRT-dependent microautophagy of proteasomes concomitant with proteasome storage granule assembly during glucose starvation. PLoS Genet 15:e1008387. https://doi.org/10.1371/journal.pgen.1008387 

  15. ELife RS Marshall 7 e34532 2018 10.7554/eLife.34532 Marshall RS, Vierstra RD (2018) Proteasome storage granules protect proteasomes from autophagic degradation upon carbon starvation. ELife 7:e34532. https://doi.org/10.7554/eLife.34532 

  16. Mol Cell RS Marshall 58 1053 2015 10.1016/j.molcel.2015.04.023 Marshall RS, Li F, Gemperline DC, Book AJ, Vierstra RD (2015) Autophagic degradation of the 26S proteasome is mediated by the dual ATG8/ubiquitin receptor RPN10 in Arabidopsis. Mol Cell 58:1053-1066. https://doi.org/10.1016/j.molcel.2015.04.023 

  17. Cell Rep RS Marshall 16 1717 2016 10.1016/j.celrep.2016.07.015 Marshall RS, McLoughlin F, Vierstra RD (2016) Autophagic turnover of inactive 26S proteasomes in yeast is directed by the ubiquitin receptor Cue5 and the Hsp42 chaperone. Cell Rep 16:1717-1732. https://doi.org/10.1016/j.celrep.2016.07.015 

  18. J Biol Chem AA Nemec 292 21466 2017 10.1074/jbc.M117.817999 Nemec AA, Howell LA, Peterson AK, Murray MA, Tomko RJ (2017) Autophagic clearance of proteasomes in yeast requires the conserved sorting nexin Snx4. J Biol Chem 292:21466-21480. https://doi.org/10.1074/jbc.M117.817999 

  19. BioEssays M Oku 40 1800008 2018 10.1002/bies.201800008 Oku M, Sakai Y (2018) Three distinct types of microautophagy based on membrane dynamics and molecular machineries. BioEssays 40:1800008. https://doi.org/10.1002/bies.201800008 

  20. J Cell Biol M Oku 216 3263 2017 10.1083/jcb.201611029 Oku M, Maeda Y, Kagohashi Y, Kondo T, Yamada M, Fujimoto T, Sakai Y (2017) Evidence for ESCRT- and clathrin-dependent microautophagy. J Cell Biol 216:3263-3274. https://doi.org/10.1083/jcb.201611029 

  21. J Cell Biol LZ Peters 201 663 2013 10.1083/jcb.201211146 Peters LZ, Hazan R, Breker M, Schuldiner M, Ben-Aroya S (2013) Formation and dissociation of proteasome storage granules are regulated by cytosolic pH. J Cell Biol 201:663-671. https://doi.org/10.1083/jcb.201211146 

  22. J Cell Sci LZ Peters 129 1190 2016 10.1242/jcs.179648 Peters LZ, Karmon O, Miodownik S, Ben-Aroya S (2016) Proteasome storage granules are transiently associated with the insoluble protein deposit in Saccharomyces cerevisiae. J Cell Sci 129:1190-1197. https://doi.org/10.1242/jcs.179648 

  23. PLoS ONE R Saunier 8 e70357 2013 10.1371/journal.pone.0070357 Saunier R, Esposito M, Dassa EP, Delahodde A (2013) Integrity of the Saccharomyces cerevisiae Rpn11 protein is critical for formation of proteasome storage granules (PSG) and survival in stationary phase. PLoS ONE 8:e70357. https://doi.org/10.1371/journal.pone.0070357 

  24. EMBO J JA Schäfer 39 e102586 2020 10.15252/embj.2019102586 Schäfer JA, Schessner JP, Bircham PW, Tsuji T, Funaya C, Pajonk O, Schaeff K, Ruffini G, Papagiannidis D, Knop M, Fujimoto T, Schuck S (2020) ESCRT machinery mediates selective microautophagy of endoplasmic reticulum in yeast. EMBO J 39:e102586. https://doi.org/10.15252/embj.2019102586 

  25. Curr Genet K Simpson-Lavy 64 785 2018 10.1007/s00294-018-0805-0 Simpson-Lavy K, Kupiec M (2018) A reversible liquid drop aggregation controls glucose response in yeast. Curr Genet 64:785-788. https://doi.org/10.1007/s00294-018-0805-0 

  26. J Biol Chem K Tekirdag 293 5414 2018 10.1074/jbc.R117.818237 Tekirdag K, Cuervo AM (2018) Chaperone-mediated autophagy and endosomal microautophagy: jointed by a chaperone. J Biol Chem 293:5414-5424. https://doi.org/10.1074/jbc.R117.818237 

  27. Annu Rev Biochem RJ Tomko 82 415 2013 10.1146/annurev-biochem-060410-150257 Tomko RJ, Hochstrasser M (2013) Molecular architecture and assembly of the eukaryotic proteasome. Annu Rev Biochem 82:415-445. https://doi.org/10.1146/annurev-biochem-060410-150257 

  28. J Cell Sci S van Deventer 128 109 2015 10.1242/jcs.157354 van Deventer S, Menendez-Benito V, van Leeuwen F, Neefjes J (2015) N-terminal acetylation and replicative age affect proteasome localization and cell fitness during aging. J Cell Sci 128:109-117. https://doi.org/10.1242/jcs.157354 

  29. J Biol Chem KA Waite 291 3239 2016 10.1074/jbc.M115.699124 Waite KA, Mota-Peynado AD-L, Vontz G, Roelofs J (2016) Starvation induces proteasome autophagy with different pathways for core and regulatory particles. J Biol Chem 291:3239-3253. https://doi.org/10.1074/jbc.M115.699124 

  30. EMBO J MH Weberruss 32 2697 2013 10.1038/emboj.2013.192 Weberruss MH, Savulescu AF, Jando J, Bissinger T, Harel A, Glickman MH, Enenkel C (2013) Blm10 facilitates nuclear import of proteasome core particles. EMBO J 32:2697-2707. https://doi.org/10.1038/emboj.2013.192 

  31. J Mol Biol X Wen 428 1681 2016 10.1016/j.jmb.2016.02.021 Wen X, Klionsky DJ (2016) An overview of macroautophagy in yeast. J Mol Biol 428:1681-1699. https://doi.org/10.1016/j.jmb.2016.02.021 

  32. Curr Genet B Zhang 2019 10.1007/s00294-019-01016-3 Zhang B, Herman PK (2019) It is all about the process(ing): P-body granules and the regulation of signal transduction. Curr Genet. https://doi.org/10.1007/s00294-019-01016-3 

관련 콘텐츠

오픈액세스(OA) 유형

GREEN

저자가 공개 리포지터리에 출판본, post-print, 또는 pre-print를 셀프 아카이빙 하여 자유로운 이용이 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로