$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Microautophagy in Plants: Consideration of Its Molecular Mechanism 원문보기

Cells, v.9 no.4, 2020년, pp.887 -   

Sieńko, Katarzyna ,  Poormassalehgoo, Andisheh ,  Yamada, Kenji ,  Goto-Yamada, Shino

Abstract AI-Helper 아이콘AI-Helper

Microautophagy is a type of autophagy. It is characterized by direct enclosing with the vacuolar/lysosomal membrane, which completes the isolation and uptake of cell components in the vacuole. Several publications present evidence that plants exhibit microautophagy. Plant microautophagy is involved ...

주제어

참고문헌 (82)

  1. 1. Lai Z. Wang F. Zheng Z. Fan B. Chen Z. A critical role of autophagy in plant resistance to necrotrophic fungal pathogens Plant J. 2011 66 953 968 10.1111/j.1365-313X.2011.04553.x 21395886 

  2. 2. Shibata M. Oikawa K. Yoshimoto K. Kondo M. Mano S. Yamada K. Hayashi M. Sakamoto W. Ohsumi Y. Nishimura M. Highly oxidized peroxisomes are selectively degraded via autophagy in Arabidopsis Plant Cell 2013 25 4967 4983 10.1105/tpc.113.116947 24368788 

  3. 3. Wang P. Mugume Y. Bassham D.C. New advances in autophagy in plants: Regulation, selectivity and function Semin. Cell Dev. Biol. 2018 80 113 122 10.1016/j.semcdb.2017.07.018 28734771 

  4. 4. Signorelli S. Tarkowski L.P. Van den Ende W. Bassham D.C. Linking Autophagy to Abiotic and Biotic Stress Responses Trends Plant Sci. 2019 24 413 430 10.1016/j.tplants.2019.02.001 30824355 

  5. 5. Van Doorn W.G. Papini A. Ultrastructure of autophagy in plant cells: A review Autophagy 2013 9 1922 1936 10.4161/auto.26275 24145319 

  6. 6. Lefebvre C. Legouis R. Culetto E. ESCRT and autophagies: Endosomal functions and beyond Semin. Cell Dev. Biol. 2018 74 21 28 10.1016/j.semcdb.2017.08.014 28807884 

  7. 7. Ohsumi Y. Molecular dissection of autophagy: Two ubiquitin-like systems Nat. Rev. Mol. Cell Biol. 2001 2 211 216 10.1038/35056522 11265251 

  8. 8. Mizushima N. Komatsu M. Autophagy: Renovation of cells and tissues Cell 2011 147 728 741 10.1016/j.cell.2011.10.026 22078875 

  9. 9. De Duve C. Wattiaux R. Functions of lysosomes Annu. Rev. Physiol. 1966 28 435 492 10.1146/annurev.ph.28.030166.002251 5322983 

  10. 10. Galluzzi L. Baehrecke E.H. Ballabio A. Boya P. Bravo-San Pedro J.M. Cecconi F. Choi A.M. Chu C.T. Codogno P. Colombo M.I. Molecular definitions of autophagy and related processes EMBO J. 2017 36 1811 1836 10.15252/embj.201796697 28596378 

  11. 11. Schuck S. Gallagher C.M. Walter P. ER-phagy mediates selective degradation of endoplasmic reticulum independently of the core autophagy machinery J. Cell Sci. 2014 127 4078 4088 10.1242/jcs.154716 25052096 

  12. 12. Oku M. Sakai Y. Three distinct types of microautophagy based on membrane dynamics and molecular machineries Bioessays 2018 40 e1800008 10.1002/bies.201800008 29708272 

  13. 13. Muller O. Sattler T. Flotenmeyer M. Schwarz H. Plattner H. Mayer A. Autophagic tubes: Vacuolar invaginations involved in lateral membrane sorting and inverse vesicle budding J. Cell Biol. 2000 151 519 528 10.1083/jcb.151.3.519 11062254 

  14. 14. Sahu R. Kaushik S. Clement C.C. Cannizzo E.S. Scharf B. Follenzi A. Potolicchio I. Nieves E. Cuervo A.M. Santambrogio L. Microautophagy of cytosolic proteins by late endosomes Dev. Cell 2011 20 131 139 10.1016/j.devcel.2010.12.003 21238931 

  15. 15. Tamura N. Oku M. Sakai Y. Atg21 regulates pexophagy via its PI(3)P-binding activity in Pichia pastoris FEMS Yeast Res. 2014 14 435 444 10.1111/1567-1364.12132 24373415 

  16. 16. Mukaiyama H. Baba M. Osumi M. Aoyagi S. Kato N. Ohsumi Y. Sakai Y. Modification of a ubiquitin-like protein Paz2 conducted micropexophagy through formation of a novel membrane structure Mol. Biol. Cell 2004 15 58 70 10.1091/mbc.e03-05-0340 13679515 

  17. 17. Ano Y. Hattori T. Oku M. Mukaiyama H. Baba M. Ohsumi Y. Kato N. Sakai Y. A sorting nexin PpAtg24 regulates vacuolar membrane dynamics during pexophagy via binding to phosphatidylinositol-3-phosphate Mol. Biol. Cell 2005 16 446 457 10.1091/mbc.e04-09-0842 15563611 

  18. 18. Roberts P. Moshitch-Moshkovitz S. Kvam E. O’Toole E. Winey M. Goldfarb D.S. Piecemeal microautophagy of nucleus in Saccharomyces cerevisiae Mol. Biol. Cell 2003 14 129 141 10.1091/mbc.e02-08-0483 12529432 

  19. 19. Krick R. Muehe Y. Prick T. Bremer S. Schlotterhose P. Eskelinen E.L. Millen J. Goldfarb D.S. Thumm M. Piecemeal microautophagy of the nucleus requires the core macroautophagy genes Mol. Biol. Cell 2008 19 4492 4505 10.1091/mbc.e08-04-0363 18701704 

  20. 20. Lemasters J.J. Variants of mitochondrial autophagy: Types 1 and 2 mitophagy and micromitophagy (Type 3) Redox Biol. 2014 2 749 754 10.1016/j.redox.2014.06.004 25009776 

  21. 21. Vevea J.D. Garcia E.J. Chan R.B. Zhou B. Schultz M. Di Paolo G. McCaffery J.M. Pon L.A. Role for lipid droplet biogenesis and microlipophagy in adaptation to lipid imbalance in yeast Dev. Cell 2015 35 584 599 10.1016/j.devcel.2015.11.010 26651293 

  22. 22. Van Zutphen T. Todde V. de Boer R. Kreim M. Hofbauer H.F. Wolinski H. Veenhuis M. van der Klei I.J. Kohlwein S.D. Lipid droplet autophagy in the yeast Saccharomyces cerevisiae Mol. Biol. Cell 2014 25 290 301 10.1091/mbc.e13-08-0448 24258026 

  23. 23. Tsuji T. Fujimoto M. Tatematsu T. Cheng J. Orii M. Takatori S. Fujimoto T. Niemann-Pick type C proteins promote microautophagy by expanding raft-like membrane domains in the yeast vacuole Elife 2017 6 10.7554/eLife.25960 28590904 

  24. 24. Tuttle D.L. Dunn W.A. Divergent modes of autophagy in the methylotrophic yeast Pichia pastoris J. Cell Sci. 1995 108 25 35 7738102 

  25. 25. Dunn W.A. Jr. Cregg J.M. Kiel J.A. van der Klei I.J. Oku M. Sakai Y. Sibirny A.A. Stasyk O.V. Veenhuis M. Pexophagy: The selective autophagy of peroxisomes Autophagy 2005 1 75 83 10.4161/auto.1.2.1737 16874024 

  26. 26. Sakai Y. Koller A. Rangell L.K. Keller G.A. Subramani S. Peroxisome degradation by microautophagy in Pichia pastoris : Identification of specific steps and morphological intermediates J. Cell Biol. 1998 141 625 636 10.1083/jcb.141.3.625 9566964 

  27. 27. Pan X. Goldfarb D.S. YEB3/VAC8 encodes a myristylated armadillo protein of the Saccharomyces cerevisiae vacuolar membrane that functions in vacuole fusion and inheritance J. Cell Sci. 1998 111 2137 2147 9664035 

  28. 28. Schuck S. Prinz W.A. Thorn K.S. Voss C. Walter P. Membrane expansion alleviates endoplasmic reticulum stress independently of the unfolded protein response J. Cell Biol. 2009 187 525 536 10.1083/jcb.200907074 19948500 

  29. 29. Schafer J.A. Schessner J.P. Bircham P.W. Tsuji T. Funaya C. Pajonk O. Schaeff K. Ruffini G. Papagiannidis D. Knop M. ESCRT machinery mediates selective microautophagy of endoplasmic reticulum in yeast EMBO J. 2020 39 e102586 10.15252/embj.2019102586 31802527 

  30. 30. Oku M. Maeda Y. Kagohashi Y. Kondo T. Yamada M. Fujimoto T. Sakai Y. Evidence for ESCRT- and clathrin-dependent microautophagy J. Cell Biol. 2017 216 3263 3274 10.1083/jcb.201611029 28838958 

  31. 31. Feng Y. He D. Yao Z. Klionsky D.J. The machinery of macroautophagy Cell Res. 2014 24 24 41 10.1038/cr.2013.168 24366339 

  32. 32. Li W.W. Li J. Bao J.K. Microautophagy: Lesser-known self-eating Cell Mol. Life Sci. 2012 69 1125 1136 10.1007/s00018-011-0865-5 22080117 

  33. 33. Mukherjee A. Patel B. Koga H. Cuervo A.M. Jenny A. Selective endosomal microautophagy is starvation-inducible in Drosophila Autophagy 2016 12 1984 1999 10.1080/15548627.2016.1208887 27487474 

  34. 34. Yamagata M. Obara K. Kihara A. Sphingolipid synthesis is involved in autophagy in Saccharomyces cerevisiae Biochem. Biophys. Res. Commun. 2011 410 786 791 10.1016/j.bbrc.2011.06.061 21703229 

  35. 35. Stromhaug P.E. Bevan A. Dunn W.A. Jr. GSA11 encodes a unique 208-kDa protein required for pexophagy and autophagy in Pichia pastoris J. Biol. Chem. 2001 276 42422 42435 10.1074/jbc.M104087200 11533052 

  36. 36. Mukaiyama H. Oku M. Baba M. Samizo T. Hammond A.T. Glick B.S. Kato N. Sakai Y. Paz2 and 13 other PAZ gene products regulate vacuolar engulfment of peroxisomes during micropexophagy Genes Cells 2002 7 75 90 10.1046/j.1356-9597.2001.00499.x 11856375 

  37. 37. Nazarko V.Y. Nazarko T.Y. Farre J.C. Stasyk O.V. Warnecke D. Ulaszewski S. Cregg J.M. Sibirny A.A. Subramani S. Atg35, a micropexophagy-specific protein that regulates micropexophagic apparatus formation in Pichia pastoris Autophagy 2011 7 375 385 10.4161/auto.7.4.14369 21169734 

  38. 38. Yoshimoto K. Beginning to understand autophagy, an intracellular self-degradation system in plants Plant Cell Physiol. 2012 53 1355 1365 10.1093/pcp/pcs099 22764279 

  39. 39. Li F. Chung T. Vierstra R.D. AUTOPHAGY-RELATED11 plays a critical role in general autophagy- and senescence-induced mitophagy in Arabidopsis Plant Cell 2014 26 788 807 10.1105/tpc.113.120014 24563201 

  40. 40. Lee H.N. Zarza X. Kim J.H. Yoon M.J. Kim S.H. Lee J.H. Paris N. Munnik T. Otegui M.S. Chung T. Vacuolar trafficking protein VPS38 is dispensable for autophagy Plant Physiol. 2018 176 1559 1572 10.1104/pp.17.01297 29184027 

  41. 41. Sattler T. Mayer A. Cell-free reconstitution of microautophagic vacuole invagination and vesicle formation J. Cell Biol. 2000 151 529 538 10.1083/jcb.151.3.529 11062255 

  42. 42. Oku M. Sakai Y. Pexophagy in yeasts Biochim. Biophys. Acta 2016 1863 992 998 10.1016/j.bbamcr.2015.09.023 26409485 

  43. 43. Lee Y. Kim E.S. Choi Y. Hwang I. Staiger C.J. Chung Y.Y. Lee Y. The Arabidopsis phosphatidylinositol 3-kinase is important for pollen development Plant Physiol. 2008 147 1886 1897 10.1104/pp.108.121590 18515640 

  44. 44. Xu N. Gao X.Q. Zhao X.Y. Zhu D.Z. Zhou L.Z. Zhang X.S. Arabidopsis AtVPS15 is essential for pollen development and germination through modulating phosphatidylinositol 3-phosphate formation Plant Mol. Biol. 2011 77 251 260 10.1007/s11103-011-9806-9 21833541 

  45. 45. Feldman M.J. Poirier B.C. Lange B.M. Misexpression of the Niemann-Pick disease type C1 (NPC1)-like protein in Arabidopsis causes sphingolipid accumulation and reproductive defects Planta 2015 242 921 933 10.1007/s00425-015-2322-4 26007685 

  46. 46. Uttenweiler A. Schwarz H. Neumann H. Mayer A. The vacuolar transporter chaperone (VTC) complex is required for microautophagy Mol. Biol. Cell 2007 18 166 175 10.1091/mbc.e06-08-0664 17079729 

  47. 47. Toulmay A. Prinz W.A. Direct imaging reveals stable, micrometer-scale lipid domains that segregate proteins in live cells J. Cell Biol. 2013 202 35 44 10.1083/jcb.201301039 23836928 

  48. 48. Gao C. Zhuang X. Shen J. Jiang L. Plant ESCRT complexes: Moving beyond endosomal sorting Trends Plant Sci. 2017 22 986 998 10.1016/j.tplants.2017.08.003 28867368 

  49. 49. Korbei B. Moulinier-Anzola J. De-Araujo L. Lucyshyn D. Retzer K. Khan M.A. Luschnig C. Arabidopsis TOL proteins act as gatekeepers for vacuolar sorting of PIN2 plasma membrane protein Curr. Biol. 2013 23 2500 2505 10.1016/j.cub.2013.10.036 24316203 

  50. 50. Gao C. Luo M. Zhao Q. Yang R. Cui Y. Zeng Y. Xia J. Jiang L. A unique plant ESCRT component, FREE1, regulates multivesicular body protein sorting and plant growth Curr. Biol. 2014 24 2556 2563 10.1016/j.cub.2014.09.014 25438943 

  51. 51. Reyes F.C. Buono R.A. Roschzttardtz H. Di Rubbo S. Yeun L.H. Russinova E. Otegui M.S. A novel endosomal sorting complex required for transport (ESCRT) component in Arabidopsis thaliana controls cell expansion and development J. Biol. Chem. 2014 289 4980 4988 10.1074/jbc.M113.529685 24385429 

  52. 52. Eastmond P.J. Quettier A.L. Kroon J.T. Craddock C. Adams N. Slabas A.R. Phosphatidic acid phosphohydrolase 1 and 2 regulate phospholipid synthesis at the endoplasmic reticulum in Arabidopsis Plant Cell 2010 22 2796 2811 10.1105/tpc.109.071423 20699392 

  53. 53. Kitakura S. Vanneste S. Robert S. Lofke C. Teichmann T. Tanaka H. Friml J. Clathrin mediates endocytosis and polar distribution of PIN auxin transporters in Arabidopsis Plant Cell 2011 23 1920 1931 10.1105/tpc.111.083030 21551390 

  54. 54. Ebine K. Okatani Y. Uemura T. Goh T. Shoda K. Niihama M. Morita M.T. Spitzer C. Otegui M.S. Nakano A. A SNARE complex unique to seed plants is required for protein storage vacuole biogenesis and seed development of Arabidopsis thaliana Plant Cell 2008 20 3006 3021 10.1105/tpc.107.057711 18984676 

  55. 55. Zheng J. Han S.W. Rodriguez-Welsh M.F. Rojas-Pierce M. Homotypic vacuole fusion requires VTI11 and is regulated by phosphoinositides Mol. Plant 2014 7 1026 1040 10.1093/mp/ssu019 24569132 

  56. 56. Takemoto K. Ebine K. Askani J.C. Kruger F. Gonzalez Z.A. Ito E. Goh T. Schumacher K. Nakano A. Ueda T. Distinct sets of tethering complexes, SNARE complexes, and Rab GTPases mediate membrane fusion at the vacuole in Arabidopsis Proc. Natl. Acad Sci. USA 2018 115 E2457 E2466 10.1073/pnas.1717839115 29463724 

  57. 57. Brillada C. Zheng J. Kruger F. Rovira-Diaz E. Askani J.C. Schumacher K. Rojas-Pierce M. Phosphoinositides control the localization of HOPS subunit VPS41, which together with VPS33 mediates vacuole fusion in plants Proc. Natl. Acad Sci. USA 2018 115 E8305 E8314 10.1073/pnas.1807763115 30104351 

  58. 58. Liu X.M. Sun L.L. Hu W. Ding Y.H. Dong M.Q. Du L.L. ESCRTs cooperate with a selective autophagy receptor to mediate vacuolar targeting of soluble cargos Mol. Cell 2015 59 1035 1042 10.1016/j.molcel.2015.07.034 26365378 

  59. 59. Svenning S. Lamark T. Krause K. Johansen T. Plant NBR1 is a selective autophagy substrate and a functional hybrid of the mammalian autophagic adapters NBR1 and p62/SQSTM1 Autophagy 2011 7 993 1010 10.4161/auto.7.9.16389 21606687 

  60. 60. Uytterhoeven V. Lauwers E. Maes I. Miskiewicz K. Melo M.N. Swerts J. Kuenen S. Wittocx R. Corthout N. Marrink S.J. Hsc70-4 deforms membranes to promote synaptic protein turnover by endosomal microautophagy Neuron 2015 88 735 748 10.1016/j.neuron.2015.10.012 26590345 

  61. 61. Noel L.D. Cagna G. Stuttmann J. Wirthmuller L. Betsuyaku S. Witte C.P. Bhat R. Pochon N. Colby T. Parker J.E. Interaction between SGT1 and cytosolic/nuclear HSC70 chaperones regulates Arabidopsis immune responses Plant Cell 2007 19 4061 4076 10.1105/tpc.107.051896 18065690 

  62. 62. Lin B.L. Wang J.S. Liu H.C. Chen R.W. Meyer Y. Barakat A. Delseny M. Genomic analysis of the Hsp70 superfamily in Arabidopsis thaliana Cell Stress Chaperones 2001 6 201 208 10.1379/1466-1268(2001)006<0201:GAOTHS>2.0.CO;2 11599561 

  63. 63. Pattingre S. Espert L. Biard-Piechaczyk M. Codogno P. Regulation of macroautophagy by mTOR and Beclin 1 complexes Biochimie 2008 90 313 323 10.1016/j.biochi.2007.08.014 17928127 

  64. 64. Liu Y. Bassham D.C. TOR is a negative regulator of autophagy in Arabidopsis thaliana PLoS ONE 2010 5 e11883 10.1371/journal.pone.0011883 20686696 

  65. 65. Loewith R. Hall M.N. Target of rapamycin (TOR) in nutrient signaling and growth control Genetics 2011 189 1177 1201 10.1534/genetics.111.133363 22174183 

  66. 66. Dubouloz F. Deloche O. Wanke V. Cameroni E. De Virgilio C. The TOR and EGO protein complexes orchestrate microautophagy in yeast Mol. Cell 2005 19 15 26 10.1016/j.molcel.2005.05.020 15989961 

  67. 67. Han S. Yu B. Wang Y. Liu Y. Role of plant autophagy in stress response Protein Cell 2011 2 784 791 10.1007/s13238-011-1104-4 22058033 

  68. 68. Chanoca A. Kovinich N. Burkel B. Stecha S. Bohorquez-Restrepo A. Ueda T. Eliceiri K.W. Grotewold E. Otegui M.S. Anthocyanin vacuolar inclusions form by a microautophagy mechanism Plant Cell 2015 27 2545 2559 10.1105/tpc.15.00589 26342015 

  69. 69. Nakamura S. Hidema J. Sakamoto W. Ishida H. Izumi M. Selective elimination of membrane-damaged chloroplasts via microautophagy Plant Physiol. 2018 177 1007 1026 10.1104/pp.18.00444 29748433 

  70. 70. Nakamura S. Izumi M. Chlorophagy is ATG gene-dependent microautophagy process Plant Signal. Behav. 2019 14 1554469 10.1080/15592324.2018.1558679 

  71. 71. Goto-Yamada S. Oikawa K. Bizan J. Shigenobu S. Yamaguchi K. Mano S. Hayashi M. Ueda H. Hara-Nishimura I. Nishimura M. Sucrose starvation induces microautophagy in plant root cells Front. Plant Sci. 2019 10 1604 10.3389/fpls.2019.01604 31850051 

  72. 72. Moriyasu Y. Ohsumi Y. Autophagy in tobacco suspension-cultured cells in response to sucrose starvation Plant Physiol. 1996 111 1233 1241 10.1104/pp.111.4.1233 12226358 

  73. 73. Inoue Y. Suzuki T. Hattori M. Yoshimoto K. Ohsumi Y. Moriyasu Y. AtATG genes, homologs of yeast autophagy genes, are involved in constitutive autophagy in Arabidopsis root tip cells Plant Cell Physiol. 2006 47 1641 1652 10.1093/pcp/pcl031 17085765 

  74. 74. Hiratsuka R. Terasaka O. Pollen tube reuses intracellular components of nucellar cells undergoing programmed cell death in Pinus densiflora Protoplasma 2011 248 339 351 10.1007/s00709-010-0176-y 20623148 

  75. 75. Van Doorn W.G. Kirasak K. Ketsa S. Amorphous areas in the cytoplasm of Dendrobium tepal cells: Production through organelle degradation and destruction through macroautophagy? Autophagy 2013 9 1159 1166 10.4161/auto.24784 23823702 

  76. 76. Sobieszczuk-Nowicka E. Wrzesinski T. Bagniewska-Zadworna A. Kubala S. Rucinska-Sobkowiak R. Polcyn W. Misztal L. Mattoo A.K. Physio-genetic dissection of dark-induced leaf senescence and timing its reversal in barley Plant Physiol. 2018 178 654 671 10.1104/pp.18.00516 30126868 

  77. 77. Betz W.J. Mao F. Smith C.B. Imaging exocytosis and endocytosis Curr. Opin. Neurobiol. 1996 6 365 371 10.1016/S0959-4388(96)80121-8 8794083 

  78. 78. Bolte S. Talbot C. Boutte Y. Catrice O. Read N.D. Satiat-Jeunemaitre B. FM-dyes as experimental probes for dissecting vesicle trafficking in living plant cells J. Microsc. 2004 214 159 173 10.1111/j.0022-2720.2004.01348.x 15102063 

  79. 79. Yamada K. Fuji K. Shimada T. Nishimura M. Hara-Nishimura I. Endosomal proteases facilitate the fusion of endosomes with vacuoles at the final step of the endocytotic pathway Plant J. 2005 41 888 898 10.1111/j.1365-313X.2005.02349.x 15743452 

  80. 80. Scheuring D. Scholler M. Kleine-Vehn J. Lofke C. Vacuolar staining methods in plant cells Methods Mol. Biol. 2015 1242 83 92 10.1007/978-1-4939-1902-4_8 25408446 

  81. 81. Takatsuka C. Inoue Y. Higuchi T. Hillmer S. Robinson D.G. Moriyasu Y. Autophagy in tobacco BY-2 cells cultured under sucrose starvation conditions: Isolation of the autolysosome and its characterization Plant Cell Physiol. 2011 52 2074 2087 10.1093/pcp/pcr137 22039105 

  82. 82. Merkulova E.A. Guiboileau A. Naya L. Masclaux-Daubresse C. Yoshimoto K. Assessment and optimization of autophagy monitoring methods in Arabidopsis roots indicate direct fusion of autophagosomes with vacuoles Plant Cell Physiol. 2014 55 715 726 10.1093/pcp/pcu041 24566535 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로