$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Therapeutic Strategies Against COVID-19 and Structural Characterization of SARS-CoV-2: A Review 원문보기

Frontiers in microbiology, v.11, 2020년, pp.1723 -   

Jeong, Gi Uk (Center for Convergence for Emerging Virus Infection, Korea Research Institute of Chemical Technology (KRICT) , Daejeon , South Korea) ,  Song, Hanra (Division of Therapeutics and Biotechnology, KRICT , Daejeon , South Korea) ,  Yoon, Gun Young (Center for Convergence for Emerging Virus Infection, Korea Research Institute of Chemical Technology (KRICT) , Daejeon , South Korea) ,  Kim, Doyoun (Division of Therapeutics and Biotechnology, KRICT , Daejeon , South Korea) ,  Kwon, Young-Chan (Center for Convergence for Emerging Virus Infection, Korea Research Institute of Chemical Technology (KRICT) , Daejeon , South Korea)

Abstract AI-Helper 아이콘AI-Helper

The novel coronavirus, SARS-CoV-2, or 2019-nCoV, which originated in Wuhan, Hubei province, China in December 2019, is a grave threat to public health worldwide. A total of 3,672,238 confirmed cases of coronavirus disease 2019 (COVID-19) and 254,045 deaths were reported globally up to May 7, 2020. H...

Keyword

참고문헌 (83)

  1. Anand K. Palm G. J. Mesters J. R. Siddell S. G. Ziebuhr J. Hilgenfeld R. ( 2002 ). Structure of coronavirus main proteinase reveals combination of a chymotrypsin fold with an extra alpha-helical domain . EMBO J. 21 , 3213 ? 3224 . 10.1093/emboj/cdf327 12093723 

  2. Anand K. Ziebuhr J. Wadhwani P. Mesters J. R. Hilgenfeld R. ( 2003 ). Coronavirus main proteinase (3CLpro) structure: basis for design of anti-SARS drugs . Science 300 , 1763 ? 1767 . 10.1126/science.1085658 12746549 

  3. Andersen K. G. Rambaut A. Lipkin W. I. Holmes E. C. Garry R. F. ( 2020 ). The proximal origin of SARS-CoV-2 . Nat. Med. 26 , 450 ? 452 . 10.1038/s41591-020-0820-9 32284615 

  4. Barnes C. O. West A. P. Jr. Huey-Tubman K. E. Hoffmann M. A. G. Sharaf N. G. Hoffman P. R. ( 2020 ). Structures of human antibodies bound to SARS-CoV-2 spike reveal common epitopes and recurrent features of antibodies . Cell . 10.1016/j.cell.2020.06.025 . [Epub ahead of print]. 

  5. Belouzard S. Chu V. C. Whittaker G. R. ( 2009 ). Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites . Proc. Natl. Acad. Sci. U. S. A. 106 , 5871 ? 5876 . 10.1073/pnas.0809524106 19321428 

  6. Bittmann S. Luchter E. Weissenstein A. Villalon G. Moschuring-Alieva E. ( 2020 ). TMPRSS2-inhibitors play a role in cell entry mechanism of COVID-19: an insight into camostat and nafamostat . J. Regen. Biol. Med. 2 , 1 ? 3 . 10.37191/Mapsci-2582-385X-2(2)-022 

  7. Brierley I. Digard P. Inglis S. C. ( 1989 ). Characterization of an efficient coronavirus ribosomal frameshifting signal: requirement for an RNA pseudoknot . Cell 57 , 537 ? 547 . 2720781 

  8. Burchill L. J. Velkoska E. Dean R. G. Griggs K. Patel S. K. Burrell L. M. ( 2012 ). Combination renin-angiotensin system blockade and angiotensin-converting enzyme 2 in experimental myocardial infarction: implications for future therapeutic directions . Clin. Sci. 123 , 649 ? 658 . 10.1042/CS20120162 22715807 

  9. Cascella M. Rajnik M. Cuomo A. Dulebohn S. C. Di Napoli R. ( 2020 ). “Features, evaluation and treatment coronavirus (COVID-19),” in Statpearls [internet] ( Treasure Island, FL : StatPearls ). 

  10. Chen N. Zhou M. Dong X. Qu J. Gong F. Han Y. . ( 2020 ). Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study . Lancet 395 , 507 ? 513 . 10.1016/S0140-6736(20)30211-7 32007143 

  11. Cheng Y.-S. Williamson P. R. Zheng W. ( 2019 ). Improving therapy of severe infections through drug repurposing of synergistic combinations . Curr. Opin. Pharmacol. 48 , 92 ? 98 . 10.1016/j.coph.2019.07.006 31454708 

  12. Dai W. Zhang B. Su H. Li J. Zhao Y. Xie X. . ( 2020 ). Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease . Science 368 , 1331 ? 1335 . 10.1126/science.abb4489 32321856 

  13. de Abajo F. J. Rodriguez-Martin S. Lerma V. Mejia-Abril G. Aguilar M. Garcia-Luque A. . ( 2020 ). Use of renin-angiotensin-aldosterone system inhibitors and risk of COVID-19 requiring admission to hospital: a case-population study . Lancet 395 , 1705 ? 1714 . 10.1016/S0140-6736(20)31030-8 32416785 

  14. Elfiky A. A. ( 2020 ). Anti-HCV, nucleotide inhibitors, repurposing against COVID-19 . Life Sci. 248 : 117477 . 10.1016/j.lfs.2020.117477 32119961 

  15. Fang L. Karakiulakis G. Roth M. ( 2020 ). Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet. Respir. Med. 8 : e21 . 10.1016/S2213-2600(20)30116-8 32171062 

  16. Ferrario C. M. Jessup J. Chappell M. C. Averill D. B. Brosnihan K. B. Tallant E. A. . ( 2005 ). Effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockers on cardiac angiotensin-converting enzyme 2 . Circulation 111 , 2605 ? 2610 . 10.1161/CIRCULATIONAHA.104.510461 15897343 

  17. Gao Y. Yan L. Huang Y. Liu F. Zhao Y. Cao L. ( 2020 ). Structure of the RNA-dependent RNA polymerase from COVID-19 virus . Science 368 , 779 ? 782 . 10.1126/science.abb7498 32277040 

  18. Gorbalenya A. E. Baker S. C. Baric R. S. de Groot R. J. Drosten C. Gulyaeva A. A. . ( 2020 ). The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2 . Nat. Microbiol. 5 , 536 ? 544 . 10.1038/s41564-020-0695-z 32123347 

  19. Gorbalenya A. E. Enjuanes L. Ziebuhr J. Snijder E. J. ( 2006 ). Nidovirales: evolving the largest RNA virus genome . Virus Res. 117 , 17 ? 37 . 10.1016/j.virusres.2006.01.017 16503362 

  20. Harcourt B. H. Jukneliene D. Kanjanahaluethai A. Bechill J. Severson K. M. Smith C. M. . ( 2004 ). Identification of severe acute respiratory syndrome coronavirus replicase products and characterization of papain-like protease activity . J. Virol. 78 , 13600 ? 13612 . 10.1128/JVI.78.24.13600-13612.2004 15564471 

  21. Harrison C. ( 2020 ). Coronavirus puts drug repurposing on the fast track . Nat. Biotechnol. 38 , 379 ? 381 . 10.1038/d41587-020-00003-1 32205870 

  22. Hegyi A. Ziebuhr J. ( 2002 ). Conservation of substrate specificities among coronavirus main proteases . J. Gen. Virol. 83 , 595 ? 599 . 10.1099/0022-1317-83-3-595 11842254 

  23. Herold J. Raabe T. Schelle-Prinz B. Siddell S. ( 1993 ). Nucleotide sequence of the human coronavirus 229E RNA polymerase locus . Virology 195 , 680 ? 691 8337838 

  24. Hoffmann M. Kleine-Weber H. Schroeder S. Kruger N. Herrler T. Erichsen S. . ( 2020 ). SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor . Cell 181 : 271 ? 280.e8 . 10.1016/j.cell.2020.02.052 32142651 

  25. Hogue B. Machamer C. ( 2008 ). Nidoviruses . Washington, DC : ASM Press ) 

  26. Holshue M. L. DeBolt C. Lindquist S. Lofy K. H. Wiesman J. Bruce H. ( 2020 ). First case of 2019 novel coronavirus in the United States . N. Engl. J. Med. 382 , 929 ? 936 . 10.1056/NEJMoa2001191 32004427 

  27. Huang C. Wang Y. Li X. Ren L. Zhao J. Hu Y. . ( 2020 ). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China . Lancet 395 , 497 ? 506 . 10.1016/S0140-6736(20)30183-5 31986264 

  28. Huang J. Song W. Huang H. Sun Q. ( 2020 ). Pharmacological therapeutics targeting RNA-dependent RNA polymerase, proteinase and spike protein: from mechanistic studies to clinical trials for COVID-19 . J. Clin. Med. 9 : 1131 . 10.3390/jcm9041131 32326602 

  29. Huentelman M. J. Zubcevic J. Hernandez Prada J. A. Xiao X. Dimitrov D. S. Raizada M. K. . ( 2004 ). Structure-based discovery of a novel angiotensin-converting enzyme 2 inhibitor . Hypertension 44 , 903 ? 906 . 10.1161/01.HYP.0000146120.29648.36 15492138 

  30. Jankun J. ( 2020 ). COVID-19 pandemic; transmembrane protease serine 2 (TMPRSS2) inhibitors as potential drugs . Univ. Toledo J. Med. Sci. 7 , 1 ? 5 . 10.46570/utjms.vol7-2020-361 

  31. Jin Z. Du X. Xu Y. Deng Y. Liu M. Zhao Y. . ( 2020 ). Structure of M pro from COVID-19 virus and discovery of its inhibitors . Nature 582 , 289 ? 293 . 10.1038/s41586-020-2223-y 32272481 

  32. Ju B. Zhang Q. Ge J. Wang R. Sun J. Ge X. . ( 2020 ). Human neutralizing antibodies elicited by SARS-CoV-2 infection . Nature . 10.1038/s41586-020-2380-z . [Epub ahead of print]. 

  33. Kirchdoerfer R. N. Ward A. B. ( 2019 ). Structure of the SARS-CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors . Nat. Commun. 10 : 2342 . 10.1038/s41467-019-10280-3 31138817 

  34. Klumperman J. Locker J. K. Meijer A. Horzinek M. C. Geuze H. J. Rottier P. ( 1994 ). Coronavirus M proteins accumulate in the golgi complex beyond the site of virion budding . J Virol. 68 , 6523 ? 6534 . 8083990 

  35. Lan J. Ge J. Yu J. Shan S. Zhou H. Fan S. . ( 2020 ). Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor . Nature 581 , 215 ? 220 . 10.1038/s41586-020-2180-5 32225176 

  36. Lim L. Shi J. Mu Y. Song J. ( 2014 ). Dynamically-driven enhancement of the catalytic machinery of the SARS 3C-like protease by the S284-T285-I286/A mutations on the extra domain . PLoS ONE 9 : e101941 . 10.1371/journal.pone.0101941 25036652 

  37. Liu H. Ye F. Sun Q. Liang H. Li C. Lu R. ( 2020 ). Scutellaria baicalensis extract and baicalein inhibit replication of SARS-CoV-2 and its 3C-like protease in vitro. bioRxiv [Preprint] . 10.1101/2020.04.10.035824 

  38. Lu R. Zhao X. Li J. Niu P. Yang B. Wu H. . ( 2020 ). Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding . Lancet 395 , 565 ? 574 . 10.1016/S0140-6736(20)30251-8 32007145 

  39. Lv Z. Chu Y. Wang Y. ( 2015 ). HIV protease inhibitors: a review of molecular selectivity and toxicity . HIV AIDS 7 , 95 ? 104 . 10.2147/HIV.S79956 25897264 

  40. Matsuyama S. Nagata N. Shirato K. Kawase M. Takeda M. Taguchi F. ( 2010 ). Efficient activation of the severe acute respiratory syndrome coronavirus spike protein by the transmembrane protease TMPRSS2 . J. Virol. 84 , 12658 ? 12664 . 10.1128/JVI.01542-10 20926566 

  41. Matsuyama S. Nao N. Shirato K. Kawase M. Saito S. Takayama I. . ( 2020 ). Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells . Proc. Natl. Acad Sci. U.S.A. 117 , 7001 ? 7003 . 10.1073/pnas.2002589117 32165541 

  42. Monteil V. Kwon H. Prado P. Hagelkruys A. Wimmer R. A. Stahl M. . ( 2020 ). Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2 . Cell 181 , 905 ? 913.e7 . 10.1016/j.cell.2020.04.004 32333836 

  43. Pasternak A. O. Spaan W. J. Snijder E. J. ( 2006 ). Nidovirus transcription: how to make sense…? J. Gen. Virol. 87 , 1403 ? 1421 . 10.1099/vir.0.81611-0 16690906 

  44. Pinto D. Park Y.-J. Beltramello M. Walls A. C. Tortorici M. A. Bianchi S. . ( 2020 ). Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody . Nature 583 , 290 ? 295 . 10.1038/s41586-020-2349-y 32422645 

  45. Prentice E. McAuliffe J. Lu X. Subbarao K. Denison M. R. ( 2004 ). Identification and characterization of severe acute respiratory syndrome coronavirus replicase proteins . J. Virol. 78 , 9977 ? 9986 . 10.1128/JVI.78.18.9977-9986.2004 15331731 

  46. Raj V. S. Mou H. Smits S. L. Dekkers D. H. Muller M. A. Dijkman R. . ( 2013 ). Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC . Nature 495 , 251 ? 254 . 10.1038/nature12005 23486063 

  47. Sanders J. M. Monogue M. L. Jodlowski T. Z. Cutrell J. B. ( 2020 ). Pharmacologic treatments for coronavirus disease 2019 (COVID-19): a review . JAMA . 10.1001/jama.2020.6019 . [Epub ahead of print]. 

  48. Sawicki S. G. Sawicki D. L. Siddell S. G. ( 2007 ). A contemporary view of coronavirus transcription . J. Virol. 81 , 20 ? 29 . 10.1128/JVI.01358-06 16928755 

  49. Schomburg K. T. Rarey M. ( 2014 ). What is the potential of structure-based target prediction methods? Future Med. Chem. 6 , 1987 ? 1989 . 10.4155/fmc.14.135 25531963 

  50. Senanayake S. L. ( 2020 ). Drug repurposing strategies for COVID-19 . Future Drug Discov 2 : FDD40 10.4155/fdd-2020-0010 

  51. Shang J. Ye G. Shi K. Wan Y. Luo C. Aihara H. . ( 2020 ). Structural basis of receptor recognition by SARS-CoV-2 . Nature 10.1038/s41586-020-2179-y 32225175 

  52. Sheahan T. P. Sims A. C. Zhou S. Graham R. L. Pruijssers A. J. Agostini M. L. . ( 2020 ). An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice . Sci. Transl. Med. 12 : eabb5883 . 10.1126/scitranslmed.abb5883 32253226 

  53. Soler M. J. Ye M. Wysocki J. William J. Lloveras J. Batlle D. ( 2009 ). Localization of ACE2 in the renal vasculature: amplification by angiotensin II type 1 receptor blockade using telmisartan . Am. J. Physiol. Renal. Physiol. 296 , F398 ? 405 . 10.1152/ajprenal.90488.2008 19004932 

  54. Sonawane K. Barale S. S. Dhanavade M. J. Waghmare S. R. Nadaf N. H. Kamble S. A. ( 2020 ). Homology modeling and docking studies of TMPRSS2 with experimentally known inhibitors Camostat mesylate, Nafamostat and Bromhexine hydrochloride to control SARS-Coronavirus-2 . ChemRxiv. 10.26434/chemrxiv.12162360.v1 

  55. ter Meulen J. van den Brink E. N. Poon L. L. Marissen W. E. Leung C. S. Cox F. . ( 2006 ). Human monoclonal antibody combination against SARS coronavirus: synergy and coverage of escape mutants . PLoS Med. 3 : e237 . 10.1371/journal.pmed.0030237 16796401 

  56. Thiel V. Herold J. Schelle B. Siddell S. G. ( 2001 ). Viral replicase gene products suffice for coronavirus discontinuous transcription . J. Virol. 75 , 6676 ? 6681 . 10.1128/JVI.75.14.6676-6681.2001 11413334 

  57. Thiel V. Ivanov K. A. Putics A. Hertzig T. Schelle B. Bayer S. . ( 2003 ). Mechanisms and enzymes involved in SARS coronavirus genome expression . J. Gen. Virol. 84 , 2305 ? 2315 . 10.1099/vir.0.19424-0 12917450 

  58. Tian X. Li C. Huang A. Xia S. Lu S. Shi Z. . ( 2020 ). Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody . Emerg. Microbes. Infect. 9 , 382 ? 385 . 10.1080/22221751.2020.1729069 32065055 

  59. Towler P. Staker B. Prasad S. G. Menon S. Tang J. Parsons T. . ( 2004 ). ACE2 X-ray structures reveal a large hinge-bending motion important for inhibitor binding and catalysis . J. Biol. Chem. 279 , 17996 ? 18007 . 10.1074/jbc.M311191200 14754895 

  60. Vaduganathan M. Vardeny O. Michel T. McMurray J. J. V. Pfeffer M. A. Solomon S. D. ( 2020 ). Renin-angiotensin-aldosterone system inhibitors in patients with Covid-19 . N. Engl. J. Med. 382 , 1653 ? 1659 . 10.1056/NEJMsr2005760 32227760 

  61. Venkataraman S. Prasad B. Selvarajan R. ( 2018 ). RNA dependent RNA polymerases: insights from structure, function and evolution . Viruses 10 : 76 . 10.3390/v10020076 29439438 

  62. Walls A. C. Park Y.-J. Tortorici M. A. Wall A. McGuire A. T. Veesler D. ( 2020 ). Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein . Cell 181 : 281 ? 292.e6 . 10.1016/j.cell.2020.02.058 32155444 

  63. Wang M. Cao R. Zhang L. Yang X. Liu J. Xu M. . ( 2020 ). Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro . Cell Res. 30 , 269 ? 271 . 10.1038/s41422-020-0282-0 32020029 

  64. Wang Y. Zhang D. Du G. Du R. Zhao J. Jin Y. . ( 2020 ). Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial . Lancet 395 , P1569 ? 1578 . 10.1016/S0140-6736(20)31022-9 32423584 

  65. Warren T. K. Jordan R. Lo M. K. Ray A. S. Mackman R. L. Soloveva V. . ( 2016 ). Therapeutic efficacy of the small molecule GS-5734 against ebola virus in rhesus monkeys . Nature 531 , 381 ? 385 . 10.1038/nature17180 26934220 

  66. Watkins J. ( 2020 ). Preventing a covid-19 pandemic . BMJ 368 : m810 . 10.1136/bmj.m810 32111649 

  67. Wrapp D. Wang N. Corbett K. S. Goldsmith J. A. Hsieh C. L. Abiona O. . ( 2020 ). Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation . Science 367 , 1260 ? 1263 . 10.1126/science.abb2507 32075877 

  68. Wu Y. Wang F. Shen C. Peng W. Li D. Zhao C. . ( 2020 ). A noncompeting pair of human neutralizing antibodies block COVID-19 virus binding to its receptor ACE2 . Science 368 , 1274 ? 1278 . 10.1126/science.abc2241 32404477 

  69. Xia S. Liu M. Wang C. Xu W. Lan Q. Feng S. . ( 2020 ). Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion . Cell Res. 30 , 343 ? 355 . 10.1038/s41422-020-0305-x 32231345 

  70. Xu X. Chen P. Wang J. Feng J. Zhou H. Li X. . ( 2020 ). Evolution of the novel coronavirus from the ongoing Wuhan Outbreak and modeling of its spike protein for risk of human transmission . Sci. China Life Sci. 63 , 457 ? 460 . 10.1007/s11427-020-1637-5 32009228 

  71. Yamamoto N. Matsuyama S. Hoshino T. Yamamoto N. ( 2020 ). Nelfinavir inhibits replication of severe acute respiratory syndrome coronavirus 2 in vitro . bioRxiv . 10.1101/2020.04.06.026476 15144898 

  72. Yan R. Zhang Y. Li Y. Xia L. Guo Y. Zhou Q. ( 2020 ). Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2 . Science 367 , 1444 ? 1448 . 10.1126/science.abb2762 32132184 

  73. Yang H. Xie W. Xue X. Yang K. Ma J. Liang W. . ( 2005 ). Design of wide-spectrum inhibitors targeting coronavirus main proteases . PLoS Biol. 3 : e324 . 10.1371/journal.pbio.0030324 16128623 

  74. Yin W. Mao C. Luan X. Shen D. D. Shen Q. Su H. . ( 2020 ). Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir . Science 368 , 1499 ? 1504 . 10.1126/science.abc1560 32358203 

  75. Yuan M. Wu N. C. Zhu X. Lee C.-C. D. So R. T. Lv H. . ( 2020 ). A highly conserved cryptic epitope in the receptor-binding domains of SARS-CoV-2 and SARS-CoV . Science 368 , 630 ? 633 . 10.1126/science.abb7269 32245784 

  76. Zhai Y. Sun F. Li X. Pang H. Xu X. Bartlam M. . ( 2005 ). Insights into SARS-CoV transcription and replication from the structure of the nsp7-nsp8 hexadecamer . Nat. Struct. Mol. Biol. 12 , 980 ? 986 . 10.1038/nsmb999 16228002 

  77. Zhang L. Lin D. Kusov Y. Nian Y. Ma Q. Wang J. . ( 2020a ). α-ketoamides as broad-spectrum inhibitors of coronavirus and enterovirus replication: structure-based design, synthesis, and activity assessment . J. Med. Chem . 63 , 4562 ? 4578 . 10.1021/acs.jmedchem.9b01828 32045235 

  78. Zhang L. Lin D. Sun X. Curth U. Drosten C. Sauerhering L. . ( 2020b ). Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved alpha-ketoamide inhibitors . Science 368 , 409 ? 412 . 10.1126/science.abb3405 32198291 

  79. Zhou P. Yang X.-L. Wang X.-G. Hu B. Zhang L. Zhang W. . ( 2020 ). A pneumonia outbreak associated with a new coronavirus of probable bat origin . Nature 579 , 270 ? 273 . 10.1038/s41586-020-2012-7 32015507 

  80. Zhu N. Zhang D. Wang W. Li X. Yang B. Song J. . ( 2020 ). A novel coronavirus from patients with pneumonia in China, 2019 . N. Engl. J. Med. 382 , 727 ? 733 . 10.1056/NEJMoa2001017 31978945 

  81. Ziebuhr J. ( 2004 ). Molecular biology of severe acute respiratory syndrome coronavirus . Curr. Opin. Microbiol. 7 , 412 ? 419 . 10.1016/j.mib.2004.06.007 15358261 

  82. Ziebuhr J. Snijder E. J. Gorbalenya A. E. ( 2000 ). Virus-encoded proteinases and proteolytic processing in the Nidovirales . J. Gen. Virol. 81 , 853 ? 879 . 10.1099/0022-1317-81-4-853 10725411 

  83. Zumla A. Chan J. F. Azhar E. I. Hui D. S. Yuen K.-Y. ( 2016 ). Coronaviruses―drug discovery and therapeutic options . Nat. Rev Drug Discov. 15 , 327 ? 347 . 10.1038/nrd.2015.37 26868298 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로