최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Frontiers in microbiology, v.11, 2020년, pp.1723 -
Jeong, Gi Uk (Center for Convergence for Emerging Virus Infection, Korea Research Institute of Chemical Technology (KRICT) , Daejeon , South Korea) , Song, Hanra (Division of Therapeutics and Biotechnology, KRICT , Daejeon , South Korea) , Yoon, Gun Young (Center for Convergence for Emerging Virus Infection, Korea Research Institute of Chemical Technology (KRICT) , Daejeon , South Korea) , Kim, Doyoun (Division of Therapeutics and Biotechnology, KRICT , Daejeon , South Korea) , Kwon, Young-Chan (Center for Convergence for Emerging Virus Infection, Korea Research Institute of Chemical Technology (KRICT) , Daejeon , South Korea)
The novel coronavirus, SARS-CoV-2, or 2019-nCoV, which originated in Wuhan, Hubei province, China in December 2019, is a grave threat to public health worldwide. A total of 3,672,238 confirmed cases of coronavirus disease 2019 (COVID-19) and 254,045 deaths were reported globally up to May 7, 2020. H...
Anand K. Palm G. J. Mesters J. R. Siddell S. G. Ziebuhr J. Hilgenfeld R. ( 2002 ). Structure of coronavirus main proteinase reveals combination of a chymotrypsin fold with an extra alpha-helical domain . EMBO J. 21 , 3213 ? 3224 . 10.1093/emboj/cdf327 12093723
Anand K. Ziebuhr J. Wadhwani P. Mesters J. R. Hilgenfeld R. ( 2003 ). Coronavirus main proteinase (3CLpro) structure: basis for design of anti-SARS drugs . Science 300 , 1763 ? 1767 . 10.1126/science.1085658 12746549
Andersen K. G. Rambaut A. Lipkin W. I. Holmes E. C. Garry R. F. ( 2020 ). The proximal origin of SARS-CoV-2 . Nat. Med. 26 , 450 ? 452 . 10.1038/s41591-020-0820-9 32284615
Barnes C. O. West A. P. Jr. Huey-Tubman K. E. Hoffmann M. A. G. Sharaf N. G. Hoffman P. R. ( 2020 ). Structures of human antibodies bound to SARS-CoV-2 spike reveal common epitopes and recurrent features of antibodies . Cell . 10.1016/j.cell.2020.06.025 . [Epub ahead of print].
Belouzard S. Chu V. C. Whittaker G. R. ( 2009 ). Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites . Proc. Natl. Acad. Sci. U. S. A. 106 , 5871 ? 5876 . 10.1073/pnas.0809524106 19321428
Brierley I. Digard P. Inglis S. C. ( 1989 ). Characterization of an efficient coronavirus ribosomal frameshifting signal: requirement for an RNA pseudoknot . Cell 57 , 537 ? 547 . 2720781
Burchill L. J. Velkoska E. Dean R. G. Griggs K. Patel S. K. Burrell L. M. ( 2012 ). Combination renin-angiotensin system blockade and angiotensin-converting enzyme 2 in experimental myocardial infarction: implications for future therapeutic directions . Clin. Sci. 123 , 649 ? 658 . 10.1042/CS20120162 22715807
Cascella M. Rajnik M. Cuomo A. Dulebohn S. C. Di Napoli R. ( 2020 ). “Features, evaluation and treatment coronavirus (COVID-19),” in Statpearls [internet] ( Treasure Island, FL : StatPearls ).
Chen N. Zhou M. Dong X. Qu J. Gong F. Han Y. . ( 2020 ). Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study . Lancet 395 , 507 ? 513 . 10.1016/S0140-6736(20)30211-7 32007143
Cheng Y.-S. Williamson P. R. Zheng W. ( 2019 ). Improving therapy of severe infections through drug repurposing of synergistic combinations . Curr. Opin. Pharmacol. 48 , 92 ? 98 . 10.1016/j.coph.2019.07.006 31454708
Dai W. Zhang B. Su H. Li J. Zhao Y. Xie X. . ( 2020 ). Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease . Science 368 , 1331 ? 1335 . 10.1126/science.abb4489 32321856
de Abajo F. J. Rodriguez-Martin S. Lerma V. Mejia-Abril G. Aguilar M. Garcia-Luque A. . ( 2020 ). Use of renin-angiotensin-aldosterone system inhibitors and risk of COVID-19 requiring admission to hospital: a case-population study . Lancet 395 , 1705 ? 1714 . 10.1016/S0140-6736(20)31030-8 32416785
Elfiky A. A. ( 2020 ). Anti-HCV, nucleotide inhibitors, repurposing against COVID-19 . Life Sci. 248 : 117477 . 10.1016/j.lfs.2020.117477 32119961
Fang L. Karakiulakis G. Roth M. ( 2020 ). Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet. Respir. Med. 8 : e21 . 10.1016/S2213-2600(20)30116-8 32171062
Ferrario C. M. Jessup J. Chappell M. C. Averill D. B. Brosnihan K. B. Tallant E. A. . ( 2005 ). Effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockers on cardiac angiotensin-converting enzyme 2 . Circulation 111 , 2605 ? 2610 . 10.1161/CIRCULATIONAHA.104.510461 15897343
Gao Y. Yan L. Huang Y. Liu F. Zhao Y. Cao L. ( 2020 ). Structure of the RNA-dependent RNA polymerase from COVID-19 virus . Science 368 , 779 ? 782 . 10.1126/science.abb7498 32277040
Gorbalenya A. E. Baker S. C. Baric R. S. de Groot R. J. Drosten C. Gulyaeva A. A. . ( 2020 ). The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2 . Nat. Microbiol. 5 , 536 ? 544 . 10.1038/s41564-020-0695-z 32123347
Gorbalenya A. E. Enjuanes L. Ziebuhr J. Snijder E. J. ( 2006 ). Nidovirales: evolving the largest RNA virus genome . Virus Res. 117 , 17 ? 37 . 10.1016/j.virusres.2006.01.017 16503362
Harcourt B. H. Jukneliene D. Kanjanahaluethai A. Bechill J. Severson K. M. Smith C. M. . ( 2004 ). Identification of severe acute respiratory syndrome coronavirus replicase products and characterization of papain-like protease activity . J. Virol. 78 , 13600 ? 13612 . 10.1128/JVI.78.24.13600-13612.2004 15564471
Harrison C. ( 2020 ). Coronavirus puts drug repurposing on the fast track . Nat. Biotechnol. 38 , 379 ? 381 . 10.1038/d41587-020-00003-1 32205870
Hegyi A. Ziebuhr J. ( 2002 ). Conservation of substrate specificities among coronavirus main proteases . J. Gen. Virol. 83 , 595 ? 599 . 10.1099/0022-1317-83-3-595 11842254
Herold J. Raabe T. Schelle-Prinz B. Siddell S. ( 1993 ). Nucleotide sequence of the human coronavirus 229E RNA polymerase locus . Virology 195 , 680 ? 691 8337838
Hoffmann M. Kleine-Weber H. Schroeder S. Kruger N. Herrler T. Erichsen S. . ( 2020 ). SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor . Cell 181 : 271 ? 280.e8 . 10.1016/j.cell.2020.02.052 32142651
Hogue B. Machamer C. ( 2008 ). Nidoviruses . Washington, DC : ASM Press )
Holshue M. L. DeBolt C. Lindquist S. Lofy K. H. Wiesman J. Bruce H. ( 2020 ). First case of 2019 novel coronavirus in the United States . N. Engl. J. Med. 382 , 929 ? 936 . 10.1056/NEJMoa2001191 32004427
Huang C. Wang Y. Li X. Ren L. Zhao J. Hu Y. . ( 2020 ). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China . Lancet 395 , 497 ? 506 . 10.1016/S0140-6736(20)30183-5 31986264
Huang J. Song W. Huang H. Sun Q. ( 2020 ). Pharmacological therapeutics targeting RNA-dependent RNA polymerase, proteinase and spike protein: from mechanistic studies to clinical trials for COVID-19 . J. Clin. Med. 9 : 1131 . 10.3390/jcm9041131 32326602
Huentelman M. J. Zubcevic J. Hernandez Prada J. A. Xiao X. Dimitrov D. S. Raizada M. K. . ( 2004 ). Structure-based discovery of a novel angiotensin-converting enzyme 2 inhibitor . Hypertension 44 , 903 ? 906 . 10.1161/01.HYP.0000146120.29648.36 15492138
Jankun J. ( 2020 ). COVID-19 pandemic; transmembrane protease serine 2 (TMPRSS2) inhibitors as potential drugs . Univ. Toledo J. Med. Sci. 7 , 1 ? 5 . 10.46570/utjms.vol7-2020-361
Jin Z. Du X. Xu Y. Deng Y. Liu M. Zhao Y. . ( 2020 ). Structure of M pro from COVID-19 virus and discovery of its inhibitors . Nature 582 , 289 ? 293 . 10.1038/s41586-020-2223-y 32272481
Ju B. Zhang Q. Ge J. Wang R. Sun J. Ge X. . ( 2020 ). Human neutralizing antibodies elicited by SARS-CoV-2 infection . Nature . 10.1038/s41586-020-2380-z . [Epub ahead of print].
Kirchdoerfer R. N. Ward A. B. ( 2019 ). Structure of the SARS-CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors . Nat. Commun. 10 : 2342 . 10.1038/s41467-019-10280-3 31138817
Klumperman J. Locker J. K. Meijer A. Horzinek M. C. Geuze H. J. Rottier P. ( 1994 ). Coronavirus M proteins accumulate in the golgi complex beyond the site of virion budding . J Virol. 68 , 6523 ? 6534 . 8083990
Lan J. Ge J. Yu J. Shan S. Zhou H. Fan S. . ( 2020 ). Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor . Nature 581 , 215 ? 220 . 10.1038/s41586-020-2180-5 32225176
Lim L. Shi J. Mu Y. Song J. ( 2014 ). Dynamically-driven enhancement of the catalytic machinery of the SARS 3C-like protease by the S284-T285-I286/A mutations on the extra domain . PLoS ONE 9 : e101941 . 10.1371/journal.pone.0101941 25036652
Lu R. Zhao X. Li J. Niu P. Yang B. Wu H. . ( 2020 ). Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding . Lancet 395 , 565 ? 574 . 10.1016/S0140-6736(20)30251-8 32007145
Lv Z. Chu Y. Wang Y. ( 2015 ). HIV protease inhibitors: a review of molecular selectivity and toxicity . HIV AIDS 7 , 95 ? 104 . 10.2147/HIV.S79956 25897264
Matsuyama S. Nagata N. Shirato K. Kawase M. Takeda M. Taguchi F. ( 2010 ). Efficient activation of the severe acute respiratory syndrome coronavirus spike protein by the transmembrane protease TMPRSS2 . J. Virol. 84 , 12658 ? 12664 . 10.1128/JVI.01542-10 20926566
Matsuyama S. Nao N. Shirato K. Kawase M. Saito S. Takayama I. . ( 2020 ). Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells . Proc. Natl. Acad Sci. U.S.A. 117 , 7001 ? 7003 . 10.1073/pnas.2002589117 32165541
Monteil V. Kwon H. Prado P. Hagelkruys A. Wimmer R. A. Stahl M. . ( 2020 ). Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2 . Cell 181 , 905 ? 913.e7 . 10.1016/j.cell.2020.04.004 32333836
Pasternak A. O. Spaan W. J. Snijder E. J. ( 2006 ). Nidovirus transcription: how to make sense…? J. Gen. Virol. 87 , 1403 ? 1421 . 10.1099/vir.0.81611-0 16690906
Pinto D. Park Y.-J. Beltramello M. Walls A. C. Tortorici M. A. Bianchi S. . ( 2020 ). Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody . Nature 583 , 290 ? 295 . 10.1038/s41586-020-2349-y 32422645
Prentice E. McAuliffe J. Lu X. Subbarao K. Denison M. R. ( 2004 ). Identification and characterization of severe acute respiratory syndrome coronavirus replicase proteins . J. Virol. 78 , 9977 ? 9986 . 10.1128/JVI.78.18.9977-9986.2004 15331731
Raj V. S. Mou H. Smits S. L. Dekkers D. H. Muller M. A. Dijkman R. . ( 2013 ). Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC . Nature 495 , 251 ? 254 . 10.1038/nature12005 23486063
Sawicki S. G. Sawicki D. L. Siddell S. G. ( 2007 ). A contemporary view of coronavirus transcription . J. Virol. 81 , 20 ? 29 . 10.1128/JVI.01358-06 16928755
Schomburg K. T. Rarey M. ( 2014 ). What is the potential of structure-based target prediction methods? Future Med. Chem. 6 , 1987 ? 1989 . 10.4155/fmc.14.135 25531963
Senanayake S. L. ( 2020 ). Drug repurposing strategies for COVID-19 . Future Drug Discov 2 : FDD40 10.4155/fdd-2020-0010
Shang J. Ye G. Shi K. Wan Y. Luo C. Aihara H. . ( 2020 ). Structural basis of receptor recognition by SARS-CoV-2 . Nature 10.1038/s41586-020-2179-y 32225175
Sheahan T. P. Sims A. C. Zhou S. Graham R. L. Pruijssers A. J. Agostini M. L. . ( 2020 ). An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice . Sci. Transl. Med. 12 : eabb5883 . 10.1126/scitranslmed.abb5883 32253226
Soler M. J. Ye M. Wysocki J. William J. Lloveras J. Batlle D. ( 2009 ). Localization of ACE2 in the renal vasculature: amplification by angiotensin II type 1 receptor blockade using telmisartan . Am. J. Physiol. Renal. Physiol. 296 , F398 ? 405 . 10.1152/ajprenal.90488.2008 19004932
Sonawane K. Barale S. S. Dhanavade M. J. Waghmare S. R. Nadaf N. H. Kamble S. A. ( 2020 ). Homology modeling and docking studies of TMPRSS2 with experimentally known inhibitors Camostat mesylate, Nafamostat and Bromhexine hydrochloride to control SARS-Coronavirus-2 . ChemRxiv. 10.26434/chemrxiv.12162360.v1
ter Meulen J. van den Brink E. N. Poon L. L. Marissen W. E. Leung C. S. Cox F. . ( 2006 ). Human monoclonal antibody combination against SARS coronavirus: synergy and coverage of escape mutants . PLoS Med. 3 : e237 . 10.1371/journal.pmed.0030237 16796401
Thiel V. Herold J. Schelle B. Siddell S. G. ( 2001 ). Viral replicase gene products suffice for coronavirus discontinuous transcription . J. Virol. 75 , 6676 ? 6681 . 10.1128/JVI.75.14.6676-6681.2001 11413334
Thiel V. Ivanov K. A. Putics A. Hertzig T. Schelle B. Bayer S. . ( 2003 ). Mechanisms and enzymes involved in SARS coronavirus genome expression . J. Gen. Virol. 84 , 2305 ? 2315 . 10.1099/vir.0.19424-0 12917450
Tian X. Li C. Huang A. Xia S. Lu S. Shi Z. . ( 2020 ). Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody . Emerg. Microbes. Infect. 9 , 382 ? 385 . 10.1080/22221751.2020.1729069 32065055
Towler P. Staker B. Prasad S. G. Menon S. Tang J. Parsons T. . ( 2004 ). ACE2 X-ray structures reveal a large hinge-bending motion important for inhibitor binding and catalysis . J. Biol. Chem. 279 , 17996 ? 18007 . 10.1074/jbc.M311191200 14754895
Vaduganathan M. Vardeny O. Michel T. McMurray J. J. V. Pfeffer M. A. Solomon S. D. ( 2020 ). Renin-angiotensin-aldosterone system inhibitors in patients with Covid-19 . N. Engl. J. Med. 382 , 1653 ? 1659 . 10.1056/NEJMsr2005760 32227760
Venkataraman S. Prasad B. Selvarajan R. ( 2018 ). RNA dependent RNA polymerases: insights from structure, function and evolution . Viruses 10 : 76 . 10.3390/v10020076 29439438
Walls A. C. Park Y.-J. Tortorici M. A. Wall A. McGuire A. T. Veesler D. ( 2020 ). Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein . Cell 181 : 281 ? 292.e6 . 10.1016/j.cell.2020.02.058 32155444
Wang M. Cao R. Zhang L. Yang X. Liu J. Xu M. . ( 2020 ). Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro . Cell Res. 30 , 269 ? 271 . 10.1038/s41422-020-0282-0 32020029
Wang Y. Zhang D. Du G. Du R. Zhao J. Jin Y. . ( 2020 ). Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial . Lancet 395 , P1569 ? 1578 . 10.1016/S0140-6736(20)31022-9 32423584
Warren T. K. Jordan R. Lo M. K. Ray A. S. Mackman R. L. Soloveva V. . ( 2016 ). Therapeutic efficacy of the small molecule GS-5734 against ebola virus in rhesus monkeys . Nature 531 , 381 ? 385 . 10.1038/nature17180 26934220
Watkins J. ( 2020 ). Preventing a covid-19 pandemic . BMJ 368 : m810 . 10.1136/bmj.m810 32111649
Wrapp D. Wang N. Corbett K. S. Goldsmith J. A. Hsieh C. L. Abiona O. . ( 2020 ). Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation . Science 367 , 1260 ? 1263 . 10.1126/science.abb2507 32075877
Wu Y. Wang F. Shen C. Peng W. Li D. Zhao C. . ( 2020 ). A noncompeting pair of human neutralizing antibodies block COVID-19 virus binding to its receptor ACE2 . Science 368 , 1274 ? 1278 . 10.1126/science.abc2241 32404477
Xia S. Liu M. Wang C. Xu W. Lan Q. Feng S. . ( 2020 ). Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion . Cell Res. 30 , 343 ? 355 . 10.1038/s41422-020-0305-x 32231345
Xu X. Chen P. Wang J. Feng J. Zhou H. Li X. . ( 2020 ). Evolution of the novel coronavirus from the ongoing Wuhan Outbreak and modeling of its spike protein for risk of human transmission . Sci. China Life Sci. 63 , 457 ? 460 . 10.1007/s11427-020-1637-5 32009228
Yan R. Zhang Y. Li Y. Xia L. Guo Y. Zhou Q. ( 2020 ). Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2 . Science 367 , 1444 ? 1448 . 10.1126/science.abb2762 32132184
Yang H. Xie W. Xue X. Yang K. Ma J. Liang W. . ( 2005 ). Design of wide-spectrum inhibitors targeting coronavirus main proteases . PLoS Biol. 3 : e324 . 10.1371/journal.pbio.0030324 16128623
Yin W. Mao C. Luan X. Shen D. D. Shen Q. Su H. . ( 2020 ). Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir . Science 368 , 1499 ? 1504 . 10.1126/science.abc1560 32358203
Yuan M. Wu N. C. Zhu X. Lee C.-C. D. So R. T. Lv H. . ( 2020 ). A highly conserved cryptic epitope in the receptor-binding domains of SARS-CoV-2 and SARS-CoV . Science 368 , 630 ? 633 . 10.1126/science.abb7269 32245784
Zhai Y. Sun F. Li X. Pang H. Xu X. Bartlam M. . ( 2005 ). Insights into SARS-CoV transcription and replication from the structure of the nsp7-nsp8 hexadecamer . Nat. Struct. Mol. Biol. 12 , 980 ? 986 . 10.1038/nsmb999 16228002
Zhang L. Lin D. Kusov Y. Nian Y. Ma Q. Wang J. . ( 2020a ). α-ketoamides as broad-spectrum inhibitors of coronavirus and enterovirus replication: structure-based design, synthesis, and activity assessment . J. Med. Chem . 63 , 4562 ? 4578 . 10.1021/acs.jmedchem.9b01828 32045235
Zhang L. Lin D. Sun X. Curth U. Drosten C. Sauerhering L. . ( 2020b ). Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved alpha-ketoamide inhibitors . Science 368 , 409 ? 412 . 10.1126/science.abb3405 32198291
Zhou P. Yang X.-L. Wang X.-G. Hu B. Zhang L. Zhang W. . ( 2020 ). A pneumonia outbreak associated with a new coronavirus of probable bat origin . Nature 579 , 270 ? 273 . 10.1038/s41586-020-2012-7 32015507
Zhu N. Zhang D. Wang W. Li X. Yang B. Song J. . ( 2020 ). A novel coronavirus from patients with pneumonia in China, 2019 . N. Engl. J. Med. 382 , 727 ? 733 . 10.1056/NEJMoa2001017 31978945
Ziebuhr J. ( 2004 ). Molecular biology of severe acute respiratory syndrome coronavirus . Curr. Opin. Microbiol. 7 , 412 ? 419 . 10.1016/j.mib.2004.06.007 15358261
Ziebuhr J. Snijder E. J. Gorbalenya A. E. ( 2000 ). Virus-encoded proteinases and proteolytic processing in the Nidovirales . J. Gen. Virol. 81 , 853 ? 879 . 10.1099/0022-1317-81-4-853 10725411
Zumla A. Chan J. F. Azhar E. I. Hui D. S. Yuen K.-Y. ( 2016 ). Coronaviruses―drug discovery and therapeutic options . Nat. Rev Drug Discov. 15 , 327 ? 347 . 10.1038/nrd.2015.37 26868298
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
오픈액세스 학술지에 출판된 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.