$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Facile fabrication of polyacrylonitrile‐derived porous carbon beads via electron beam irradiation as anode materials for Li‐ion batteries 원문보기

International journal of energy research, v.45 no.6, 2021년, pp.9530 - 9540  

Lee, Byoung‐Min (Department of Polymer Science and Engineering, Chungnam National University, Daejeon, Korea) ,  Umirov, Nurzhan (Graduate School of Energy Science and Technology, Chungnam National University, Daejeon, Korea) ,  Lee, Jang‐Yong (Department of Polymer Science and Engineering, Chungnam National University, Daejeon, Korea) ,  Lee, Jae‐Young (Graduate School of Energy Science and Technology, Chungnam National University, Daejeon, Korea) ,  Choi, Beom‐Seok (Department of Polymer Science and Engineering, Chungnam National University, Daejeon, Korea) ,  Hong, Sung‐Kwon (Department of Polymer Science and Engineering, Chungnam National University, Daejeon, Korea) ,  Kim, Sung‐Soo (Graduate School of Energy Science and Technology, Chungnam National University, Daejeon, Korea) ,  Choi, Jae‐Hak (Department of Polymer Science and Engineering, Chungnam National Un)

Abstract AI-Helper 아이콘AI-Helper

SummaryIn this study, porous carbon beads (PCBs) as an anode material for Li‐ion batteries (LiBs) were prepared from polyacrylonitrile (PAN) via electron beam irradiation (EBI). Porous PAN beads (PPBs) were irradiated with electron beams, stabilized under the optimized conditions, and finally ...

Keyword

참고문헌 (51)

  1. Deng K , Zhao B , Zhu L , Shao Z . Molten salt synthesis of nitrogen‐doped carbon with hierarchical pore structures for use as high‐performance electrodes in supercapacitors . Carbon . 2015 ; 93 : 48 ‐ 58 . 

  2. Li Z , Yang S , Zhou H , et al. Facile synthesis of SiO 2 /C anode using PVC as carbon source for lithium‐ion batteries . J Mater Sci . 2019 ; 30 : 69 ‐ 78 . 

  3. Ou J , Zhang Y , Chen L , et al. Nitrogen‐rich porous carbon derived from biomass as a high performance anode material for lithium ion batteries . J Mater Chem A . 2015 ; 3 : 6534 ‐ 6541 . 

  4. Peng YT , Lo CT . Electrospun porous carbon nanofibers as lithium ion battery anodes . J Solid State Electrochem . 2015 ; 19 : 3401 ‐ 3410 . 

  5. Kopeć M , Lamson M , Yuan R , et al. Polyacrylonitrile‐derived nanostructured carbon materials . Prog Polym Sci . 2019 ; 92 : 89 ‐ 134 . 

  6. Xiao B , Rojo T , Li X . Hard carbon as sodium‐ion battery anodes: progress and challenges . ChemSusChem . 2018 ; 12 : 133 ‐ 144 . 

  7. Rao X , Lou Y , Chen J , et al. Polyacrylonitrile hard carbon as anode of high rate capability for lithium ion batteries . Front Energy Res . 2020 ; 8 : 3 . 

  8. Okada K , Nandi M , Maruyama J , et al. Fabrication of mesoporous polymer monolith: a template‐free approach . Chem Commun . 2011 ; 47 : 7422 ‐ 7424 . 

  9. Qi J , Li J , Yang L , et al. Synthesis of porous carbon beads with controllable pore structure for volatile organic compounds removal . Chem Eng J . 2017 ; 307 : 989 ‐ 998 . 

  10. Singh K , Shah C , Dwivedi C , Kumar M , Bajaj PN . Study of uranium adsorption using amidoximated polyacrylonitrile‐encapsulated macroporous beads . J Appl Polym Sci . 2013 ; 5 : 410 ‐ 419 . 

  11. Yu X , Xiang H , Long Y , Zhao N , Zhang X , Xu J . Preparation of porous polyacrylonitrile fibers by electrospinning a ternary system of PAN/DMF/H 2 O . Mater Lett . 2010 ; 64 : 2407 ‐ 2409 . 

  12. Rahaman MSA , Ismail AF , Mustafa A . A review of heat treatment on polyacrylonitrile fiber . Polym Degrad Stabil . 2007 ; 92 : 1421 ‐ 1432 . 

  13. Park S , Yoo SH , Kang HR , Jo SM , Joh HI , Lee S . Comprehensive stabilization mechanism of electron‐beam irradiated polyacrylonitrile fibers to shorten the conventional thermal treatment . Sci Rep . 2016 ; 6 : 27330 . 

  14. Yoo SH , Park S , Park Y , et al. Facile method to fabricate carbon fibers from textile‐grade polyacrylonitrile fibers based on electron‐beam irradiation and its effect on the subsequent thermal stabilization process . Carbon. 2017 ; 118 : 106 ‐ 113 . 

  15. Drisko GJ , Aquino C , Feron PHM , Caruso RA , Harrisson S , Luca V . One‐pot preparation and CO 2 adsorption modeling of porous carbon, metal oxide, and hybrid beads . ACS Appl Mater Interfaces . 2013 ; 5 : 5009 ‐ 5014 . 

  16. Lee HS , Baek GY , Hwang IT , Jung CH , Choi JH . Preparation of porous carbon films from polyacrylonitrile by proton irradiation and carbonization . Radiat Phys Chem . 2017 ; 141 : 369 ‐ 374 . 

  17. Kostoglou N , Ryzhkov V , Walters I , Doumanidis C , Rebholz C , Mitterer C . Arc‐produced short‐length multi‐walled carbon nanotubes as “millstones” for the preparation of graphene‐like nanoplatelets . Carbon. 2019 ; 146 : 779 ‐ 784 . 

  18. Lee BM , Jeun JP , Kang PH , Choi JH , Hong SK . Isolation and characterization of nanocrystalline cellulose from different precursor materials . Fiber Polym . 2017 ; 18 : 272 ‐ 277 . 

  19. Thommes M , Kaneko K , Neimark AV , et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report) . Pure Appl Chem . 2015 ; 87 : 1051 ‐ 1069 . 

  20. Umirov N , Seo DH , Kim T , Kim HY , Kim SS . Microstructure and electrochemical properties of rapidly solidified Si‐Ni alloys as anode for lithium‐ion batteries . J Ind Eng Chem. 2019 ; 71 : 351 ‐ 360 . 

  21. Hao J , An F , Yu Y , Zhou P , Liu Y , Lu C . Effect of coagulation conditions on solvent diffusions and the structures and tensile properties of solution spun polyacrylonitrile fibers . J Appl Polym Sci . 2017 ; 134 : 44390 . 

  22. Werber JR , Osuji CO , Elimelech M . Materials for next‐generation desalination and water purification membranes . Nat Rev Mater . 2016 ; 1 : 16018 . 

  23. Shin HK , Jeun JP , Kang PH . The characterization of polyacrylonitrile fibers stabilized by electron beam irradiation . Fiber Polym. 2012 ; 13 : 724 ‐ 728 . 

  24. Kim HY , Kim B , Lee BC , Koo YH , Baeck SH , Shim SE . Structure evolution of electrospun polyacrylonitrile nanofibers by electron beam irradiation . Fiber Polym. 2015 ; 16 : 834 ‐ 839 . 

  25. Baek GY , Lee HS , Jung JM , et al. Preparation of conductive carbon films from polyacrylonitrile/graphene oxide composite films by thermal treatment . J Ind Eng Chem. 2018 ; 58 : 87 ‐ 91 . 

  26. Wu M , Wang Q , Li K , Wu Y , Liu H . Optimization of stabilization conditions for electrospun polyacrylonitrile nanofibers . Polym Degrad Stabil. 2012 ; 97 : 1511 ‐ 1519 . 

  27. Zhang W , Wang M , Liu W , Yang C , Wu G . Higher dose rate effect of 500‐keV EB irradiation favoring free radical annealing and pre‐oxidation of polyacrylonitrile fibers . Polym Degrad Stabil. 2019 ; 167 : 201 ‐ 209 . 

  28. Zhao RX , Sun PF , Liu RJ , et al. Influence of heating procedures on the surface structure of stabilized polyacrylonitrile fibers . Appl Surf Sci . 2018 ; 433 : 321 ‐ 328 . 

  29. Lee BM , Bui VT , Lee HS , Hong SK , Choi HS , Choi JH . Fabrication of hexagonally arranged porous carbon films by proton beam irradiation and carbonization . Radiat Phys Chem. 2019 ; 163 : 18 ‐ 21 . 

  30. Yue Z , Benak KR , Wang J , Mangun CL , Economy J . Elucidating the porous and chemical structures of ZnCl 2 ‐activated polyacrylonitrile on a fiberglass substrate . J Mater Chem . 2005 ; 15 : 3142 ‐ 3148 . 

  31. Hsiao HY , Huang CM , Hsu MY , Chen H . Preparation of high‐surface‐area PAN‐based activated carbon by solution‐blowing process for CO 2 adsorption . Sep Purif Technol . 2011 ; 82 : 19 ‐ 27 . 

  32. Seo JC , Umirov N , Park SB , Lee K , Kim SS . Microalgae‐derived hollow carbon‐MoS 2 composite as anode for lithium‐ion batteries . J Ind Eng Chem. 2019 ; 79 : 106 ‐ 114 . 

  33. An Y , Tian Y , Li Y , et al. Heteroatom‐doped 3D porous carbon architectures for highly stable aqueous zinc metal batteries and non‐aqueous lithium metal batteries . Chem Eng J . 2020 ; 400 : 125843 . 

  34. Ye G , Zhu X , Chen S , et al. Nanoscale engineering of nitrogen‐doped carbon nanofiber aerogels for enhanced lithium ion storage . J Mater Chem A . 2017 ; 5 : 8247 ‐ 8254 . 

  35. Zheng F , Yang Y , Chen Q . High lithium anodic performance of highly nitrogen‐doped porous carbon prepared from a metal‐organic framework . Nat Commun . 2014 ; 5 : 5261 . 

  36. Roberts AD , Wang S , Li X , Zhang H . Hierarchical porous nitrogen‐rich carbon monoliths via ice‐templating: high capacity and high‐rate performance as lithium‐ion battery anode materials . J Mater Chem A . 2014 ; 2 : 17787 ‐ 17796 . 

  37. Qiu Z , Lin Y , Xin H , et al. Ultrahigh level nitrogen/sulfur co‐doped carbon as high performance anode materials for lithium‐ion batteries . Carbon. 2018 ; 126 : 85 ‐ 92 . 

  38. Lee BM , Eom JJ , Baek GY , et al. Cellulose non‐woven fabric‐derived porous carbon films as binder‐free electrodes for supercapacitors . Cellulose . 2019 ; 26 : 4529 ‐ 4540 . 

  39. Lee BM , Jung JM , Hwang IT , et al. Fabrication and electric heating behavior of carbon thin films from watersoluble poly(vinyl alcohol) via simple dry and ambient stabilization and carbonization . Appl Surf Sci . 2018 ; 456 : 561 ‐ 567 . 

  40. Zhou H , Zhu S , Hibino M , Honma I , Ichihara M . Lithium storage in ordered mesoporous carbon (CMK‐3) with high reversible specific energy capacity and good cycling performance . Adv Mater . 2003 ; 15 : 2107 ‐ 2111 . 

  41. Lee BM , Jeong CU , Hong SK , Yun JM , Choi JH . Eco‐friendly fabrication of porous carbon monoliths from water‐soluble carboxymethyl cellulose for supercapacitor applications . J Ind Eng Chem . 2020 ; 82 : 367 ‐ 373 . 

  42. Hou J , Cao C , Idrees F , Ma X . Hierarchical porous nitrogen‐doped carbon nanosheets derived from silk for ultrahigh‐capacity battery anodes and supercapacitors . ACS Nano . 2015 ; 9 : 2556 ‐ 2564 . 

  43. Lyu Z , Yang L , Xu D , et al. Hierarchical carbon nanocages as high‐rate anodes for Li‐ and Na‐ion batteries . Nano Res . 2015 ; 8 : 3535 ‐ 3543 . 

  44. Wang Z , Xu C , Tammela P , et al. Flexible freestanding Cladophora nanocellulose paper based Si anodes for lithium ion batteries . J Mater Chem A . 2015 ; 3 : 14109 ‐ 14115 . 

  45. Sun H , He X , Ren J , Li J , Jiang C , Wan C . Hard carbon/lithium composite anode materials for Li‐ion batteries . Electrochim Acta . 2007 ; 52 : 4312 ‐ 4316 . 

  46. Hanai K , Liu Y , Matsumura T , Imanishi N , Hirano A , Takeda Y . Electrochemical behavior of the composite anodes consisting of carbonaceous materials and lithium transition‐metal nitrides for lithium‐ion batteries . Solid State Ion . 2008 ; 179 : 1725 ‐ 1730 . 

  47. Li Z , Xu Z , Tan X , et al. Mesoporous nitrogen‐rich carbons derived from protein for ultra‐high capacity battery anodes and supercapacitors . Energy Environ Sci . 2013 ; 6 : 871 ‐ 878 . 

  48. Song R , Song H , Zhou J , Chen X , Wu B , Yang HY . Hierarchical porous carbon nanosheets and their favorable high‐rate performance in lithium ion batteries . J Mater Chem . 2012 ; 22 : 12369 ‐ 12374 . 

  49. Qie L , Chen WM , Wang ZH , et al. Nitrogen‐doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability . Adv Mater . 2012 ; 24 : 2047 ‐ 2050 . 

  50. Kim T , Choi W , Shin HC , et al. Applications of voltammetry in lithium ion battery research . J Electrochem Sci Technol . 2020 ; 11 : 14 ‐ 25 . 

  51. Yesibolati N , Umirov N , Koishybay A , et al. High performance Zn/LiFePO 4 aqueous rechargeable battery for large scale applications . Electrochim Acta . 2015 ; 152 : 505 ‐ 511 . 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로