$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Microporous Carbon Nanoparticles for Lithium–Sulfur Batteries 원문보기

Nanomaterials, v.10 no.10, 2020년, pp.2012 -   

Kang, Hui-Ju (Department of Advanced Chemicals & Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea) ,  Bari, Gazi A. K. M. Rafiqul (gmlwn120@gmail.com (H.-J.K.)) ,  Lee, Tae-Gyu (grafiqulbari@gmail.com (G.A.K.M.R.B.)) ,  Khan, Tamal Tahsin (dlxorb007@gmail.com (T.-G.L.)) ,  Park, Jae-Woo (jaewoopark0218@gmail.com (J.-W.P.)) ,  Hwang, Hyun Jin (Department of Advanced Chemicals & Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea) ,  Cho, Sung Yong (gmlwn120@gmail.com (H.-J.K.)) ,  Jun, Young-Si (grafiqulbari@gmail.com (G.A.K.M.R.B.))

Abstract AI-Helper 아이콘AI-Helper

Rechargeable lithium–sulfur batteries (LSBs) are emerging as some of the most promising next-generation battery alternatives to state-of-the-art lithium-ion batteries (LIBs) due to their high gravimetric energy density, being inexpensive, and having an abundance of elemental sulfur (S8). Howe...

Keyword

참고문헌 (48)

  1. 1. Jana M. Xu R. Cheng X.-B. Yeon J.S. Park J.M. Huang J.-Q. Zhang Q. Park H.S. Rational design of two-dimensional nanomaterials for lithium?sulfur batteries Energy Environ. Sci. 2020 13 1049 1075 10.1039/C9EE02049G 

  2. 2. Reddy M.V. Rao G.V.S. Chowdari B.V.R. Metal Oxides and Oxysalts as Anode Materials for Li Ion Batteries Chem. Rev. 2013 113 5364 5457 10.1021/cr3001884 23548181 

  3. 3. Tarascon J.-M. Armand M. Issues and challenges facing rechargeable lithium batteries Nature 2001 414 359 367 10.1038/35104644 11713543 

  4. 4. Jozwiuk A. Berkes B.B. Weiß T. Sommer H. Janek J. Brezesinski T. The critical role of lithium nitrate in the gas evolution of lithium?sulfur batteries Energy Environ. Sci. 2016 9 2603 2608 10.1039/C6EE00789A 

  5. 5. Rauh R.D. Abraham K.M. Pearson G.F. Surprenant J.K. Brummer S.B. Lithium/Dissolved Sulfur Battery with an Organic Electrolyte J. Electrochem. Soc. 1979 126 523 527 10.1149/1.2129079 

  6. 6. Worthington M.J.H. Kucera R.L. Chalker J.M. Green chemistry and polymers made from sulfur Green Chem. 2017 19 2748 2761 10.1039/C7GC00014F 

  7. 7. Xu Z.-L. Kim S.J. Chang D. Park K.-Y. Dae K.S. Dao K.P. Yuk J.M. Kang K. Visualization of regulated nucleation and growth of lithium sulfides for high energy lithium sulfur batteries Energy Environ. Sci. 2019 12 3144 3155 10.1039/C9EE01338E 

  8. 8. Wang J. Yang J. Wan C. Du K. Xie J. Xu N. Sulfur composite cathode materials for rechargeable lithium batteries Adv. Funct. Mater. 2003 13 487 492 10.1002/adfm.200304284 

  9. 9. Ji X. Lee K.T. Nazar L.F. A highly ordered nanostructured carbon?sulphur cathode for lithium?sulphur batteries Nat. Mater. 2009 8 500 506 10.1038/nmat2460 19448613 

  10. 10. Li G. Lei W. Luo D. Deng Y. Deng Z. Wang D. Yu A. Chen Z. Stringed “tube on cube” nanohybrids as compact cathode matrix for high-loading and lean-electrolyte lithium?sulfur batteries Energy Environ. Sci. 2018 11 2372 2381 10.1039/C8EE01377B 

  11. 11. Kong L. Chen J.-X. Peng H.-J. Huang J.-Q. Zhu W. Jin Q. Li B.-Q. Zhang X.-T. Zhang Q. Current-density dependence of Li 2 S/Li 2 S 2 growth in lithium?sulfur batteries Energy Environ. Sci. 2019 12 2976 2982 10.1039/C9EE01257E 

  12. 12. Song Y.-X. Shi Y. Wan J. Lang S.-Y. Hu X.-C. Yan H.-J. Liu B. Guo Y.-G. Wen R. Wan L.-J. Direct tracking of the polysulfide shuttling and interfacial evolution in all-solid-state lithium?sulfur batteries: A degradation mechanism study Energy Environ. Sci. 2019 12 2496 2506 10.1039/C9EE00578A 

  13. 13. Yu S.-H. Huang X. Schwarz K. Huang R. Arias T.A. Brock J.D. Abruna H.D. Direct visualization of sulfur cathodes: New insights into Li?S batteries via operando X-ray based methods Energy Environ. Sci. 2018 11 202 210 10.1039/C7EE02874A 

  14. 14. Yao H. Yan K. Li W. Zheng G. Kong D. Seh Z.W. Narasimhan V.K. Liang Z. Cui Y. Improved lithium?sulfur batteries with a conductive coating on the separator to prevent the accumulation of inactive S-related species at the cathode?separator interface Energy Environ. Sci. 2014 7 3381 3390 10.1039/C4EE01377H 

  15. 15. Wild M. O’Neill L. Zhang T. Purkayastha R. Minton G. Marinescu M. Offer G.J. Lithium sulfur batteries, a mechanistic review Energy Environ. Sci. 2015 8 3477 3494 10.1039/C5EE01388G 

  16. 16. Kim M.-J. Yang K. Kang H.-J. Hwang H.J. Won J.C. Kim Y.H. Jun Y.-S. Polyimide-Coated Glass Microfiber as Polysulfide Perm-Selective Separator for High-Performance Lithium-Sulphur Batteries Nanomaterials 2019 9 1612 10.3390/nano9111612 

  17. 17. Song J.-Y. Lee H.-H. Hong W.G. Huh Y.S. Lee Y.S. Kim H.J. Jun Y. A Polysulfide-Infiltrated Carbon Cloth Cathode for High-Performance Flexible Lithium?Sulfur Batteries Nanomaterials 2018 8 90 10.3390/nano8020090 

  18. 18. Zhang S. Ueno K. Dokko K. Watanabe M. Recent Advances in Electrolytes for Lithium-Sulfur Batteries Adv. Energy Mater. 2015 5 1500117 10.1002/aenm.201500117 

  19. 19. He G. Ji X. Nazar L. High “C” rate Li-S cathodes: Sulfur imbibed bimodal porous carbons Energy Environ. Sci. 2011 4 2878 2883 10.1039/c1ee01219c 

  20. 20. Lin T. Tang Y. Wang Y. Bi H. Liu Z. Huang F. Xie X. Jiang M. Scotch-tape-like exfoliation of graphite assisted with elemental sulfur and graphene?sulfur composites for high-performance lithium-sulfur batteries Energy Environ. Sci. 2013 6 1283 1290 10.1039/c3ee24324a 

  21. 21. Yu M. Ma J. Song H. Wang A. Tian F. Wang Y. Qiu H. Wang R. Atomic layer deposited TiO 2 on a nitrogen-doped graphene/sulfur electrode for high performance lithium?sulfur batteries Energy Environ. Sci. 2016 9 1495 1503 10.1039/C5EE03902A 

  22. 22. Xu G. Kushima A. Yuan J. Dou H. Xue W. Zhang X. Yan X. Li J. Ad hoc solid electrolyte on acidized carbon nanotube paper improves cycle life of lithium?sulfur batteries Energy Environ. Sci. 2017 10 2544 2551 10.1039/C7EE01898C 

  23. 23. Liu H. Thomas T. Li R. Shen H. Wang J. Yang M. Multifunctional hosts of Zinc sulfide coated carbon nanotubes for lithium sulfur batteries SN Appl. Sci. 2020 2 1156 10.1007/s42452-020-2964-0 

  24. 24. Zhang L. Senthil R.A. Pan J. Khan A. Jin X. Sun Y. A novel carbon nanotubes@porous carbon/sulfur composite as efficient electrode material for high-performance lithium-sulfur battery Ionics 2019 25 4761 4773 10.1007/s11581-019-03049-7 

  25. 25. Schuster J. He G. Mandlmeier B. Yim T. Lee K.T. Bein T. Nazar L.F. Spherical Ordered Mesoporous Carbon Nanoparticles with High Porosity for Lithium-Sulfur Batteries Angew. Chem. Int. Ed. 2012 51 3591 3595 10.1002/anie.201107817 

  26. 26. Luo S. Sun W. Ke J. Wang Y. Liu S. Hong X. Li Y. Chen Y. Xie W. Zheng C. A 3D conductive network of porous carbon nanoparticles interconnected with carbon nanotubes as the sulfur host for long cycle life lithium-sulfur batteries Nanoscale 2018 10 22601 22611 10.1039/C8NR06109B 30480697 

  27. 27. Li Q. Guo J. Zhao J. Wang C. Yan F. Porous nitrogen-doped carbon nanofibers assembled with nickel nanoparticles for lithium?sulfur batteries Nanoscale 2019 11 647 655 10.1039/C8NR07220E 30565632 

  28. 28. Razzaq A.A. Yao Y. Shah R. Qi P. Miao L. Chen M. Zhao X. Peng Y. Deng Z. High-performance lithium sulfur batteries enabled by a synergy between sulfur and carbon nanotubes Energy Storage Mater. 2019 16 194 202 10.1016/j.ensm.2018.05.006 

  29. 29. Feng Y. Zhang H. Zhang Y. Qu X. C-S Bonds in Sulfur-Embedded Graphene, Carbon Nanotubes, and Flake Graphite Cathodes for Lithium-Sulfur Batteries ACS Omega 2019 4 16352 16359 10.1021/acsomega.9b01862 31616813 

  30. 30. Zheng M. Chi Y. Hu Q. Tang H. Jiang X. Zhang L. Zhang S. Pang H. Xu Q. Carbon nanotube-based materials for lithium?sulfur batteries J. Mater. Chem. A 2019 7 17204 17241 10.1039/C9TA05347F 

  31. 31. Lu A.-H. Li W.-C. Schmidt W. Schuth F. Fabrication of hierarchically structured carbon monoliths via self-binding and salt templating Microporous Mesoporous Mater. 2006 95 187 192 10.1016/j.micromeso.2006.05.024 

  32. 32. Fechler N. Fellinger T.-P. Antonietti M. “Salt Templating”: A Simple and Sustainable Pathway toward Highly Porous Functional Carbons from Ionic Liquids Adv. Mater. 2012 25 75 79 10.1002/adma.201203422 23027658 

  33. 33. Falco C. Baccile N. Titirici M.-M. Morphological and structural differences between glucose, cellulose and lignocellulosic biomass derived hydrothermal carbons Green Chem. 2011 13 3273 10.1039/c1gc15742f 

  34. 34. Gozaydın G. Song S. Yan N. Chitin hydrolysis in acidified molten salt hydrates Green Chem. 2020 22 5096 5104 10.1039/D0GC01464H 

  35. 35. Rodriguez-Quiroz N. Padmanathan A.M.D. Mushrif S.H. Vlachos D.G. Understanding Acidity of Molten Salt Hydrate Media for Cellulose Hydrolysis by Combining Kinetic Studies, Electrolyte Solution Modeling, Molecular Dynamics Simulations, and 13C NMR Experiments ACS Catal. 2019 9 10551 10561 10.1021/acscatal.9b03301 

  36. 36. Vilian A.T.E. Song J.Y. Lee Y.S. Hwang S.-K. Kim H.J. Jun Y.-S. Huh Y.S. Han Y.-K. Salt-templated three-dimensional porous carbon for electrochemical determination of gallic acid Biosens. Bioelectron. 2018 117 597 604 10.1016/j.bios.2018.06.064 30005379 

  37. 37. Yu Q. Lu Y. Luo Y. Liu X. Huo K. Kim J.-K. He J. Luo Y. In Situ Formation of Copper-Based Hosts Embedded within 3D N-Doped Hierarchically Porous Carbon Networks for Ultralong Cycle Lithium-Sulfur Batteries Adv. Funct. Mater. 2018 28 1 12 10.1002/adfm.201804520 

  38. 38. Rempe S.B. Pratt L.R. Hummer G. Kress J.D. Martin R.L. Redondo A. The Hydration Number of Li + in Liquid Water J. Am. Chem. Soc. 2000 122 966 967 10.1021/ja9924750 

  39. 39. Leipner H. Fischer S. Brendler E. Voigt W. Structural changes of cellulose dissolved in molten salt hydrates Macromol. Chem. Phys. 2000 201 2041 2049 

  40. 40. Paraknowitsch J.P. Zhang J. Su D. Thomas A. Antonietti M. Ionic Liquids as Precursors for Nitrogen-Doped Graphitic Carbon Adv. Mater. 2009 22 87 92 10.1002/adma.200900965 

  41. 41. Sadula S. Oesterling O. Nardone A. Dinkelacker B. Saha B. One-pot integrated processing of biopolymers to furfurals in molten salt hydrate: Understanding synergy in acidity Green Chem. 2017 19 3888 3898 10.1039/C7GC01709J 

  42. 42. Liu X. Giordano C. Antonietti M. A Facile Molten-Salt Route to Graphene Synthesis Small 2013 10 193 200 10.1002/smll.201300812 23847138 

  43. 43. Lu L. Sahajwalla V. Kong C. Harris D. Quantitative X-ray diffraction analysis and its application to various coals Carbon 2001 39 1821 1833 10.1016/S0008-6223(00)00318-3 

  44. 44. Smith M. Scudiero L. Espinal J. McEwen J.-S. Garcia-Perez M. Improving the deconvolution and interpretation of XPS spectra from chars by ab initio calculations Carbon 2016 110 155 171 10.1016/j.carbon.2016.09.012 

  45. 45. Siddique A.B. Pramanick A.K. Chatterjee S. Ray M. Amorphous Carbon Dots and their Remarkable Ability to Detect 2,4,6-Trinitrophenol Sci. Rep. 2018 8 9770 10.1038/s41598-018-28021-9 29950660 

  46. 46. Wu X.-W. Xie H. Deng Q. Wang H.-X. Sheng H. Yin Y.-X. Zhou W.-X. Li R.-L. Guo Y.-G. Three-Dimensional Carbon Nanotubes Forest/Carbon Cloth as an Efficient Electrode for Lithium?Polysulfide Batteries ACS Appl. Mater. Interfaces 2017 9 1553 1561 10.1021/acsami.6b14687 27997793 

  47. 47. Jiao F. Hill A.H. Harrison A. Berko A. Chadwick A.V. Bruce P.G. Synthesis of Ordered Mesoporous NiO with Crystalline Walls and a Bimodal Pore Size Distribution J. Am. Chem. Soc. 2008 130 5262 5266 10.1021/ja710849r 18348526 

  48. 48. Lu Q. Wang X. Cao J. Chen C. Chen K. Zhao Z. Niu Z. Chen J. Freestanding carbon fiber cloth/sulfur composites for flexible room-temperature sodium-sulfur batteries Energy Storage Mater. 2017 8 77 84 10.1016/j.ensm.2017.05.001 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로