$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Recent advances in using nanofluids in renewable energy systems and the environmental implications of their uptake

Nano energy, v.86, 2021년, pp.106069 -   

Mahian, Omid (School of Chemical Engineering and Technology, Xi'an Jiaotong University) ,  Bellos, Evangelos (Thermal Department, School of Mechanical Engineering, National Technical University of Athens) ,  Markides, Christos N. (Clean Energy Processes (CEP) Laboratory, Department of Chemical Engineering, Imperial College London) ,  Taylor, Robert A. (School of Mechanical and Manufacturing Engineering, University of New South Wales) ,  Alagumalai, Avinash (Department of Mechanical Engineering, GMR Institute of Technology) ,  Yang, Liu (Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University) ,  Qin, Caiyan (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology) ,  Lee, Bong Jae (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology) ,  Ahmadi, Goodarz (Department of Mechanical and Aeronautic) ,  Safaei, Mohammad Reza ,  Wongwises, Somchai

Abstract AI-Helper 아이콘AI-Helper

Abstract It has been more than two decades since the discovery of ‘nanofluids’ – mixtures of common liquids and solid nanoparticles with at least one dimension below 100 nm in size. While colloidal suspensions of particles (which include larger particles) have been studied for sev...

Keyword

참고문헌 (229)

  1. Nature Rogelj 2016 10.1038/nature18307 Paris Agreement climate proposals need a boost to keep warming well below 2 °c 

  2. Islam 2018 Renewable Energy and the Environment 

  3. IEA, Global Energy Review (2020). https://www.iea.org/reports/global-energy-review-2020/renewables. 

  4. OCDE & IEA, Market Report Series: Renewables 2017, analysis and forecats to 2022, Executive Summary (2017) 10. doi:10.1073?pnas.0603395103. 

  5. Nanofluid Technol. Curr. Status Future Res. Choi 1998 

  6. Phys. Rep. Qiu 2020 10.1016/j.physrep.2019.12.001 A review of recent advances in thermophysical properties at the nanoscale: from solid state to colloids 

  7. Renew. Sustain. Energy Rev. Gupta 2017 10.1016/j.rser.2017.02.073 A review on thermophysical properties of nanofluids and heat transfer applications 

  8. Renew. Sustain. Energy Rev. Shahrul 2014 10.1016/j.rser.2014.05.081 A comparative review on the specific heat of nanofluids for energy perspective 

  9. J. Therm. Anal. Calorim. Le Ba 2020 Review on the recent progress in the preparation and stability of graphene-based nanofluids 

  10. Renew. Sustain. Energy Rev. Ahmad 2017 10.1016/j.rser.2017.01.173 Optical properties of various nanofluids used in solar collector: a review 

  11. Nanoscale Res. Lett. Taylor 6 2011 10.1186/1556-276X-6-225 Nanofluid optical property characterization: towards efficient direct absorption solar collectors 

  12. Opt. Express Qin 2020 10.1364/OE.393351 Absorption characteristics of a metal-insulator-metal nanodisk for solar thermal applications 

  13. Phys. Rep. Mahian 2019 Recent advances in modeling and simulation of nanofluid flows-part I: fundamentals and theory 

  14. Appl. Opt. Taylor 2013 10.1364/AO.52.001413 Feasibility of nanofluid-based optical filters 

  15. Int. J. Heat. Mass Transf. Mahian 57 582 2013 10.1016/j.ijheatmasstransfer.2012.10.037 A review of the applications of nanofluids in solar energy 

  16. Renew. Sustain. Energy Rev. Saidur 15 1646 2011 10.1016/j.rser.2010.11.035 A review on applications and challenges of nanofluids 

  17. J. Appl. Phys. Taylor 113 2013 10.1063/1.4754271 Small particles, big impacts: a review of the diverse applications of nanofluids 

  18. Fuel Sangeetha 2021 10.1016/j.fuel.2020.119422 Experimental investigation of nanofluid based photovoltaic thermal (PV/T) system for superior electrical efficiency and hydrogen production 

  19. Nano Energy Park 2021 10.1016/j.nanoen.2020.105624 Carbon nanofluid flow based biophotovoltaic cell 

  20. Nano Energy Olabi 2021 10.1016/j.nanoen.2021.105871 Application of nanofluids for enhanced waste heat recovery: a review 

  21. Nano Energy Xu 2019 The critical nanofluid concentration as the crossover between changed and unchanged solar-driven droplet evaporation rates 

  22. Nano Energy Nguyẽn 2018 10.1016/j.nanoen.2018.04.030 Thermionic emission via a nanofluid for direct electrification from low-grade heat energy 

  23. Energy Procedia Nagarajan 2416 2014 10.1016/j.egypro.2014.12.017 Nanofluids for solar collector applications: a review 

  24. Am. J. Nano Res. Appl. Sagadevan 2 53 2015 A review on application of nanofluids in solar energy applications 

  25. Renew. Energy Khanafer 123 398 2018 10.1016/j.renene.2018.01.097 A review on the applications of nanofluids in solar energy field 

  26. Recent Adv. Renew Energy Sources Sopain 69 2014 Effect of using nanofluids in solar collector: a review 

  27. Sol. Energy Shah 2019 10.1016/j.solener.2019.03.012 Applications of hybrid nanofluids in solar energy, practical limitations and challenges: a critical review 

  28. J. Mol. Liq. Ghalandari 2020 10.1016/j.molliq.2020.113476 Applications of nanofluids containing carbon nanotubes in solar energy systems: a review 

  29. Renewable and Sustainable Energy Reviews Hussein 42 460 2015 10.1016/j.rser.2014.10.027 Applications of nanotechnology in renewable energies-A comprehensive overview and understanding 

  30. Exp. Therm. Fluid Sci. Babita 79 202 2016 10.1016/j.expthermflusci.2016.06.029 Preparation and evaluation of stable nanofluids for heat transfer application: a review 

  31. RSC Adv. Kong 7 12599 2017 10.1039/C6RA28243A Preparation, characterization and tribological mechanism of nanofluids 

  32. Int. J. Heat. Mass Transf. Ghadimi 54 4051 2011 10.1016/j.ijheatmasstransfer.2011.04.014 A review of nanofluid stability properties and characterization in stationary conditions 

  33. Adv. Colloid Interface Sci. Angayarkanni 225 146 2015 10.1016/j.cis.2015.08.014 Review on thermal properties of nanofluids: recent developments 

  34. Powder Technol. Asadi 2019 10.1016/j.powtec.2019.04.054 Recent advances in preparation methods and thermophysical properties of oil-based nanofluids: a state-of-the-art review 

  35. Sci. Total Environ. Elsaid 763 2021 10.1016/j.scitotenv.2020.144202 Environmental impacts of nanofluids: a review 

  36. Heat. Mass Transf. Nakhjavani 2017 10.1007/s00231-017-2065-9 Green synthesis of silver nanoparticles using green tea leaves: experimental study on the morphological, rheological and antibacterial behaviour 

  37. Chem. Phys. Lett. Sadri 675 92 2017 10.1016/j.cplett.2017.02.077 A novel, eco-friendly technique for covalent functionalization of graphene nanoplatelets and the potential of their nanofluids for heat transfer applications 

  38. Arab. J. Chem. Sone 2016 Biosynthesized CuO nano-platelets: physical properties & enhanced thermal conductivity nanofluidics 

  39. J. Nanomater. Yu 2012 10.1155/2012/435873 A review on nanofluids: preparation, stability mechanisms, and applications 

  40. Adv. Mech. Eng. Wong 2010 10.1155/2010/519659 Applications of nanofluids: current and future 

  41. Hjerrild 2018 Nanofluid Optical Filters for Photovoltaic/ Thermal Collectors 

  42. Heat. Transf. Eng. Aybar 36 1085 2015 10.1080/01457632.2015.987586 A review of thermal conductivity models for nanofluids 

  43. Nanoscale Res. Lett. Kleinstreuer 6 2011 Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review 

  44. Appl. Energy Ambreen 2020 10.1016/j.apenergy.2020.114684 Influence of particle size on the effective thermal conductivity of nanofluids: a critical review 

  45. Nanoscale Res. Lett. Kleinstreuer 6 439 2011 10.1186/1556-276X-6-439 Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review 

  46. Renew. Sustain. Energy Rev. Murshed 76 1134 2017 10.1016/j.rser.2017.03.113 A state of the art review on viscosity of nanofluids 

  47. Int. Commun. Heat. Mass Transf. Bashirnezhad 73 114 2016 10.1016/j.icheatmasstransfer.2016.02.005 Viscosity of nanofluids: a review of recent experimental studies 

  48. Heat. Transf. Eng. Meyer 37 387 2016 10.1080/01457632.2015.1057447 The viscosity of nanofluids: a review of the theoretical, empirical, and numerical models 

  49. Exp. Therm. Fluid Sci. Chiam 81 420 2017 10.1016/j.expthermflusci.2016.09.013 Thermal conductivity and viscosity of Al2O3nanofluids for different based ratio of water and ethylene glycol mixture 

  50. Int. J. Heat. Mass Transf. Khanafer 54 4410 2011 10.1016/j.ijheatmasstransfer.2011.04.048 A critical synthesis of thermophysical characteristics of nanofluids 

  51. Renew. Energy Qin 145 21 2020 10.1016/j.renene.2019.05.133 Absorption characteristics of nanoparticles with sharp edges for a direct-absorption solar collector 

  52. Appl. Energy Crisostomo 193 1 2017 10.1016/j.apenergy.2017.02.028 A hybrid PV/T collector using spectrally selective absorbing nanofluids 

  53. Sol. Energy Mater. Sol. Cells Hjerrild 147 281 2016 10.1016/j.solmat.2015.12.010 Hybrid PV/T enhancement using selectively absorbing Ag-SiO2/carbon nanofluids 

  54. Renew. Energy Hjerrild 2018 10.1016/j.renene.2017.12.073 Exploring the effects of heat and UV exposure on glycerol-based Ag-SiO2nanofluids for PV/T applications 

  55. Appl. Surf. Sci. Taylor 2018 10.1016/j.apsusc.2018.05.201 Stability testing of silver nanodisc suspensions for solar applications 

  56. J. Sol. Energy Eng. Lee 134 2012 10.1115/1.4005756 Radiative heat transfer analysis in plasmonic nanofluids for direct solar thermal absorption 

  57. Sol. Energy Jeon 132 247 2016 10.1016/j.solener.2016.03.022 Analysis on the performance of a flat-plate volumetric solar collector using blended plasmonic nanofluid 

  58. Acc. Chem. Res. Murphy 2008 10.1021/ar800035u Gold nanoparticles in biology: beyond toxicity to cellular imaging 

  59. Energy Rep. Huang 2020 10.1016/j.egyr.2020.10.021 Energy, exergy, environmental and economic comparison of various solar thermal systems using water and Thermia Oil B base fluids, and CuO and Al2O3 nanofluids 

  60. Renew. Energy Said 2021 10.1016/j.renene.2020.11.054 Heat transfer, entropy generation, economic and environmental analyses of linear fresnel reflector using novel rGO-Co3O4 hybrid nanofluids 

  61. Renew. Sustain. Energy Rev. Raj 2018 10.1016/j.rser.2017.10.012 A review of studies using nanofluids in flat-plate and direct absorption solar collectors 

  62. Prog. Energy Combust. Sci. Said 84 2021 10.1016/j.pecs.2020.100898 Recent advances on nanofluids for low to medium temperature solar collectors: energy, exergy, economic analysis and environmental impact 

  63. J. Clean. Prod. Alawi 291 2021 10.1016/j.jclepro.2020.125725 Nanofluids for flat plate solar collectors: fundamentals and applications 

  64. J. Therm. Anal. Calorim. Akram 139 1309 2020 10.1007/s10973-019-08514-z A comprehensive review on nanofluid operated solar flat plate collectors 

  65. Diam. Relat. Mater. Sundar 110 2020 10.1016/j.diamond.2020.108115 Properties, heat transfer, energy efficiency and environmental emissions analysis of flat plate solar collector using nanodiamond nanofluids 

  66. Int. J. Energy Res. Qin 2020 10.1002/er.5165 Comparative analysis of direct-absorption parabolic-trough solar collectors considering concentric nanofluid segmentation 

  67. Appl. Therm. Eng. Qin 2021 10.1016/j.applthermaleng.2020.116333 A hybrid direct-absorption parabolic-trough solar collector combining both volumetric and surface absorption 

  68. J. Sol. Energy Eng. Tyagi 131 2009 10.1115/1.3197562 Predicted efficiency of a low-temperature nanofluid-based direct absorption solar collector 

  69. J. Renew. Sustain. Energy Otanicar 2 33102 2010 10.1063/1.3429737 Nanofluid-based direct absorption solar collector 

  70. Renew. Sustain. Energy Rev. Gorji 72 10 2017 10.1016/j.rser.2017.01.015 A review on optical properties and application of nano fl uids in direct absorption solar collectors (DASCs) 

  71. Sol. Energy Qin 150 512 2017 10.1016/j.solener.2017.05.007 Optimization of a direct absorption solar collector with blended plasmonic nanofluids 

  72. Sol. Energy Qin 169 231 2018 10.1016/j.solener.2018.04.056 Optimization of the spectral absorption coefficient of a plasmonic nanofluid for a direct absorption solar collector 

  73. Energy Convers. Manag. Sabiha 105 1377 2015 10.1016/j.enconman.2015.09.009 Energy performance of an evacuated tube solar collector using single walled carbon nanotubes nanofluids 

  74. Energy Kim 118 1304 2017 10.1016/j.energy.2016.11.009 Experimental study on performance improvement of U-tube solar collector depending on nanoparticle size and concentration of Al2O3 nanofluid 

  75. J. Clean. Prod. Iranmanesh 162 121 2017 10.1016/j.jclepro.2017.05.175 Thermal performance enhancement of an evacuated tube solar collector using graphene nanoplatelets nanofluid 

  76. Renew. Energy Ozsoy 122 26 2018 10.1016/j.renene.2018.01.031 Thermal performance of a thermosyphon heat pipe evacuated tube solar collector using silver-water nanofluid for commercial applications 

  77. Renew. Energy Tong 83 463 2015 10.1016/j.renene.2015.04.042 Effects of thermal performance of enclosed-type evacuated U-tube solar collector with multi-walled carbon nanotube/water nanofluid 

  78. Energy Kim 94 497 2016 10.1016/j.energy.2015.11.021 Theoretical investigation of the efficiency of a U-tube solar collector using various nanofluids 

  79. Renew. Energy Kaya 122 329 2018 10.1016/j.renene.2018.01.115 Experimental investigation of thermal performance of an evacuated U-Tube solar collector with ZnO/Etylene glycol-pure water nanofluids 

  80. J. Mech. Eng. Sci. Mahendran 3 301 2012 10.15282/jmes.3.2012.6.0028 Performance of evacuated tube solar collector using water-based titanium oxide nanofluid 

  81. Renew. Energy Mahbubul 121 36 2018 10.1016/j.renene.2018.01.006 Carbon nanotube nanofluid in enhancing the efficiency of evacuated tube solar collector 

  82. Appl. Therm. Eng. Ghaderian 121 520 2017 10.1016/j.applthermaleng.2017.04.117 Performance of copper oxide/distilled water nanofluid in evacuated tube solar collector (ETSC) water heater with internal coil under thermosyphon system circulations 

  83. Int. J. Heat. Mass Transf. Ghaderian 108 972 2017 10.1016/j.ijheatmasstransfer.2016.12.101 An experimental investigation on the effect of Al2O3/distilled water nanofluid on the energy efficiency of evacuated tube solar collector 

  84. J. Clean. Prod. Sharafeldin 185 347 2018 10.1016/j.jclepro.2018.03.054 Evacuated tube solar collector performance using CeO2/water nanofluid 

  85. Nanoscale Res Lett Yang 12 446 2017 10.1186/s11671-017-2185-7 Toward TiO2 Nanofluids-Part 2: Applications and Challenges 

  86. Br. J. Appl. Sci. Technol. Chaudhari 9 551 2015 10.9734/BJAST/2015/11946 An experimental investigation of a nanofluid (Al2O3+H2O) based parabolic trough solar collectors 

  87. Renew. Energy Rehan 118 742 2018 10.1016/j.renene.2017.11.062 Experimental performance analysis of low concentration ratio solar parabolic trough collectors with nanofluids in winter conditions 

  88. Environ. Prog. Sustain. Energy Subramani 37 1149 2017 10.1002/ep.12767 Experimental study on the thermal performance and heat transfer characteristics of solar parabolic trough collector using Al2O3 nanofluids 

  89. Renew. Energy Subramani 119 19 2018 10.1016/j.renene.2017.11.079 Efficiency and heat transfer improvements in a parabolic trough solar collector using TiO2 nanofluids under turbulent flow regime 

  90. Energy Convers. Manag. Kasaeian 89 368 2015 10.1016/j.enconman.2014.09.056 Performance evaluation and nanofluid using capability study of a solar parabolic trough collector 

  91. Energy Convers. Manag. Allouhi 155 201 2018 10.1016/j.enconman.2017.10.059 Energy and exergy analyses of a parabolic trough collector operated with nanofluids for medium and high temperature applications 

  92. Therm. Sci. Eng. Prog. Bellos 2 71 2017 10.1016/j.tsep.2017.05.001 Parametric investigation of nanofluids utilization in parabolic trough collectors 

  93. Sustain. Energy Technol. Assess. Bellos 26 105 2018 Thermal analysis of parabolic trough collector operating with mono and hybrid nanofluids 

  94. Appl. Energy Mwesigye 156 398 2015 10.1016/j.apenergy.2015.07.035 Thermodynamic optimisation of the performance of a parabolic trough receiver using synthetic oil-Al2O3 nanofluid 

  95. Renew. Energy Mwesigye 119 844 2018 10.1016/j.renene.2017.10.047 Numerical analysis of the thermal and thermodynamic performance of a parabolic trough solar collector using SWCNTs-Therminol®VP-1 nanofluid 

  96. Renew. Energy Bellos 94 213 2016 10.1016/j.renene.2016.03.062 Thermal enhancement of solar parabolic trough collectors by using nanofluids and converging-diverging absorber tube 

  97. Appl. Therm. Eng. Wang 107 469 2016 10.1016/j.applthermaleng.2016.06.170 Performance analysis of a parabolic trough solar collector using Al 2O3 / synthetic oil nanofluid 

  98. Int. J. Hydrog. Energy Ghasemi 42 21626 2017 10.1016/j.ijhydene.2017.07.087 Effect of using nanofluids on efficiency of parabolic trough collectors in solar thermal electric power plants 

  99. J. Sol. Energy Eng. Khakrah 139 2017 10.1115/1.4037092 Determination of parabolic trough solar collector efficiency using nanofluid: a comprehensive numerical study 

  100. Renew. Energy Minea 120 350 2018 10.1016/j.renene.2017.12.093 Influence of hybrid nanofluids on the performance of parabolic trough collectors in solar thermal systems: recent findings and numerical comparison 

  101. Energy Convers. Manag. Bellos 156 388 2018 10.1016/j.enconman.2017.11.051 Thermal, hydraulic and exergetic evaluation of a parabolic trough collector operating with thermal oil and molten salt based nanofluids 

  102. Sol. Energy Srivastava 149 195 2017 10.1016/j.solener.2017.04.004 Simulation studies of thermal and electrical performance of solar linear parabolic trough concentrating photovoltaic system 

  103. J. Nanotechnol. Eng. Med. Khullar 3 2013 Solar energy harvesting using nanofluids-based concentrating solar collector 

  104. J. Clean. Prod. Kasaeian 158 276 2017 10.1016/j.jclepro.2017.04.131 Experimental investigation on the thermal behavior of nanofluid direct absorption in a trough collector 

  105. Energy Convers. Manag Bortolato 150 693 2017 10.1016/j.enconman.2017.08.044 Investigation of a single wall carbon nanohorn-based nanofluid in a full-scale direct absorption parabolic trough solar collector 

  106. Energy Fan 142 920 2018 10.1016/j.energy.2017.10.076 Heat transfer analysis of a new volumetric based receiver for parabolic trough solar collector 

  107. Exp. Therm. Fluid Sci. Menbari 80 218 2017 10.1016/j.expthermflusci.2016.08.023 Experimental investigation of thermal performance for direct absorption solar parabolic trough collector (DASPTC) based on binary nanofluids 

  108. Renew. Energy de Risi 58 134 2013 10.1016/j.renene.2013.03.014 Modelling and optimization of transparent parabolic trough collector based on gas-phase nanofluids 

  109. Appl. Energy Potenza 203 560 2017 10.1016/j.apenergy.2017.06.075 Experimental investigation of transparent parabolic trough collector based on gas-phase nanofluid 

  110. Renew. Energy Qin 143 24 2019 10.1016/j.renene.2019.04.146 Performance analysis of a direct-absorption parabolic-trough solar collector using plasmonic nanofluids 

  111. Int. J. Photo Ahmed 2019 8039129 2019 Use of nanofluids in solar PV/thermal systems 

  112. Renew. Energy Shirazi 86 955 2016 10.1016/j.renene.2015.09.014 Transient simulation and parametric study of solar-assisted heating and cooling absorption systems: an energetic, economic and environmental (3E) assessment 

  113. Appl. Energy Li 190 1159 2017 10.1016/j.apenergy.2017.01.040 Design and analysis of a medium-temperature, concentrated solar thermal collector for air-conditioning applications 

  114. Energy Convers. Manag. Shirazi 132 281 2017 10.1016/j.enconman.2016.11.039 A comprehensive, multi-objective optimization of solar-powered absorption chiller systems for air-conditioning applications 

  115. Phys. Today Hjerrild 70 40 2017 10.1063/PT.3.3790 Boosting solar energy conversion with nanofluids 

  116. Energy Convers. Manag. An 151 23 2017 10.1016/j.enconman.2017.08.080 Analysis of a temperature dependent optical window for nanofluid-based spectral splitting in PV/T power generation applications 

  117. J. Clean. Prod. Salari 2021 10.1016/j.jclepro.2020.124318 An updated review of the performance of nanofluid-based photovoltaic thermal systems from energy, exergy, economic, and environmental (4E) approaches 

  118. J. Taiwan Inst. Chem. Eng. Sohani 2021 10.1016/j.jtice.2021.02.027 Selecting the best nanofluid type for A photovoltaic thermal (PV/T) system based on reliability, efficiency, energy, economic, and environmental criteria 

  119. Energy Convers. Manag. Al-Shamani 124 528 2016 10.1016/j.enconman.2016.07.052 Experimental studies of rectangular tube absorber photovoltaic thermal collector with various types of nanofluids under the tropical climate conditions 

  120. Energy Convers. Manag. Lari 149 467 2017 10.1016/j.enconman.2017.07.045 Design, performance and economic analysis of a nanofluid-based photovoltaic/thermal system for residential applications 

  121. Energy Sardarabadi 138 682 2017 10.1016/j.energy.2017.07.046 Experimental investigation of the effects of using metal-oxides/water nanofluids on a photovoltaic thermal system (PVT) from energy and exergy viewpoints 

  122. Energy Convers. Manag. Ebaid 155 324 2018 10.1016/j.enconman.2017.10.074 Experimental investigation of cooling photovoltaic (PV) panels using (TiO2) nanofluid in water -polyethylene glycol mixture and (Al2O3) nanofluid in water- cetyltrimethylammonium bromide mixture 

  123. Energy Convers. Manag. Hosseinzadeh 160 93 2018 10.1016/j.enconman.2018.01.006 Optimization and parametric analysis of a nanofluid based photovoltaic thermal system: 3D numerical model with experimental validation 

  124. Energy Convers. Manag. Khanjari 122 263 2016 10.1016/j.enconman.2016.05.083 Numerical investigation on using of nanofluid in a water-cooled photovoltaic thermal system 

  125. Renew. Energy Nasrin 121 286 2018 10.1016/j.renene.2018.01.014 Water/MWCNT nanofluid based cooling system of PVT: Experimental and numerical research 

  126. Sol. Energy Soltani 155 1033 2017 10.1016/j.solener.2017.06.069 An experimental investigation of a hybrid photovoltaic/thermoelectric system with nanofluid application 

  127. Light Sci. Appl. Huang 10 28 2021 10.1038/s41377-021-00465-1 Efficiency limits of concentrating spectral-splitting hybrid photovoltaic-thermal (PV-T) solar collectors and systems 

  128. Renewable Energy Huang 2021 10.1016/j.renene.2021.04.070 On the performance of concentrating fluid-based spectral-splitting hybrid PV-thermal (PV-T) solar collectors 

  129. Renew. Energy Wang 2020 Spectral-splitting hybrid PV-thermal (PVT) systems for combined heat and power provision to dairy farms 

  130. Nano Mater. Sci. Huang 2020 10.1016/j.nanoms.2020.03.008 Challenges and opportunities for nanomaterials in spectral splitting for high-performance hybrid solar photovoltaic-thermal applications: a review 

  131. Energy Convers. Manag. Al-Waeli 151 693 2017 10.1016/j.enconman.2017.09.032 Evaluation of the nanofluid and nano-PCM based photovoltaic thermal (PVT) system: an experimental study 

  132. Energy Hosseinzadeh 147 636 2018 10.1016/j.energy.2018.01.073 Energy and exergy analysis of nanofluid based photovoltaic thermal system integrated with phase change material 

  133. Int. Commun. Heat. Mass Transf. Karami 55 45 2014 10.1016/j.icheatmasstransfer.2014.04.009 Heat transfer enhancement in a hybrid microchannel-photovoltaic cell using Boehmite nanofluid 

  134. Energy Convers. Manag. Radwan 119 289 2016 10.1016/j.enconman.2016.04.045 Performance enhancement of concentrated photovoltaic systems using a microchannel heat sink with nanofluids 

  135. Energy Convers. Manag. Xu 87 504 2014 10.1016/j.enconman.2014.07.047 Concentration photovoltaic-thermal energy co-generation system using nanofluids for cooling and heating 

  136. Energy Convers. Manag. Hassani 123 431 2016 10.1016/j.enconman.2016.06.061 Environmental and exergy benefit of nanofluid-based hybrid PV/T systems 

  137. Appl. Energy An 184 197 2016 10.1016/j.apenergy.2016.10.004 Experimental investigation of a concentrating PV/T collector with Cu9S5 nanofluid spectral splitting filter 

  138. Sol. Energy Mater. Sol. Cells Hjerrild 147 281 2016 10.1016/j.solmat.2015.12.010 Hybrid PV/T enhancement using selectively absorbing Ag-SiO2/carbon nanofluids 

  139. Sol. Energy Jing 112 30 2015 10.1016/j.solener.2014.11.008 Preparation of highly dispersed nanofluid and CFD study of its utilization in a concentrating PV/T system 

  140. Energy Environ. Sci. Gao 2018 Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production 

  141. Energy Environ. Sci. Zeng 4 4074 2011 10.1039/c1ee01532j Solar evaporation enhancement using floating light-absorbing magnetic particles 

  142. Appl. Energy Amjad 206 393 2017 10.1016/j.apenergy.2017.08.144 Volumetric solar heating and steam generation via gold nanofluids 

  143. Renew. Energy Zeiny 122 443 2018 10.1016/j.renene.2018.01.043 Solar evaporation via nanofluids: a comparative study 

  144. Int. J. Sci. Eng. Res. Gnanadason 3 1 2012 Effect of nanofluids in vacuum single basin solar still 

  145. Desalination Elango 360 45 2015 10.1016/j.desal.2015.01.004 Performance study on single basin single slope solar still with different water nanofluids 

  146. Sol. Energy Sahota 130 260 2016 10.1016/j.solener.2016.02.018 Effect of Al2O3nanoparticles on the performance of passive double slope solar still 

  147. Energy Convers. Manag. Sahota 148 413 2017 10.1016/j.enconman.2017.05.068 Exergoeconomic and enviroeconomic analyses of hybrid double slope solar still loaded with nanofluids 

  148. Energy Convers. Manag. Kabeel 86 268 2014 10.1016/j.enconman.2014.05.050 Improving the performance of solar still by using nanofluids and providing vacuum 

  149. Energy Convers. Manag. Kabeel 78 493 2014 10.1016/j.enconman.2013.11.013 Enhancement of modified solar still integrated with external condenser using nanofluids: an experimental approach 

  150. Appl. Therm. Eng. Sharshir 113 684 2017 10.1016/j.applthermaleng.2016.11.085 Enhancing the solar still performance using nanofluids and glass cover cooling: experimental study 

  151. Int. J. Heat. Mass Transf. Chen 107 264 2017 10.1016/j.ijheatmasstransfer.2016.11.048 Experimental investigation of SiC nanofluids for solar distillation system: stability, optical properties and thermal conductivity with saline water-based fluid 

  152. Int. J. Heat. Mass Transf. Ding 49 240 2006 10.1016/j.ijheatmasstransfer.2005.07.009 Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids) 

  153. Nano Energy Mahian 36 134 2017 10.1016/j.nanoen.2017.04.025 Nanofluids effects on the evaporation rate in a solar still equipped with a heat exchanger 

  154. J. Therm. Anal. Calorim. Rashidi 2018 A concise review on the role of nanoparticles upon the productivity of solar desalination systems 

  155. Int. J. Energy Res. Dincer 39 585 2015 10.1002/er.3329 A review on clean energy solutions for better sustainability 

  156. Sustain. Cities Soc. Soltani 44 793 2019 10.1016/j.scs.2018.09.036 A comprehensive study of geothermal heating and cooling systems 

  157. Energy Convers. Manag. Habibollahzade 234 2021 10.1016/j.enconman.2021.113921 Comparative thermoeconomic analyses and multi-objective particle swarm optimization of geothermal combined cooling and power systems 

  158. Rosen 2016 Geothermal energy: sustainable heating and cooling using the ground 

  159. Energy Build. Sarbu 70 441 2014 10.1016/j.enbuild.2013.11.068 General review of ground-source heat pump systems for heating and cooling of buildings 

  160. Renew. Sustain. Energy Rev. Faizal 57 16 2016 10.1016/j.rser.2015.12.065 Heat transfer enhancement of geothermal energy piles 

  161. Energy Procedia Sui 105 5055 2017 10.1016/j.egypro.2017.03.1021 Investigation of thermophysical properties of nanofluids for application in geothermal energy 

  162. Int. Commun. Heat. Mass Transf. Daneshipour 81 34 2017 10.1016/j.icheatmasstransfer.2016.12.002 Nanofluids as the circuit fluids of the geothermal borehole heat exchangers 

  163. Soriano 2015 Thermal Performance of a Borehole Heat Exchanger Located in Guayaquil-Ecuador Using Novel Heat Transfer Fluids 

  164. Geothermics Jamshidi 76 177 2018 10.1016/j.geothermics.2018.07.007 Investigating the effects of geometric parameters on finned conical helical geothermal heat exchanger and its energy extraction capability 

  165. Energy Convers. Manag. Narei 123 581 2016 10.1016/j.enconman.2016.06.079 The effect of employing nanofluid on reducing the bore length of a vertical ground-source heat pump 

  166. Geothermics Diglio 72 112 2018 10.1016/j.geothermics.2017.11.005 Borehole heat exchanger with nanofluids as heat carrier 

  167. Therm. Sci. Eng. Prog. Arshad 2019 10.1016/j.tsep.2018.12.008 Energy and exergy analysis of fuel cells: a review 

  168. Appl. Energy Islam 2016 10.1016/j.apenergy.2016.06.090 Nanofluids to improve the performance of PEM fuel cell cooling systems: a theoretical approach 

  169. Int. J. Hydrog. Energy Islam 2017 10.1016/j.ijhydene.2017.06.087 Experimental investigation of using ZnO nanofluids as coolants in a PEM fuel cell 

  170. Energy Procedia Zakaria 2015 Experimental investigation of Al2O3 - water ethylene glycol mixture nanofluid thermal behaviour in a single cooling plate for PEM fuel cell application 

  171. Int. J. Hydrog. Energy Zakaria 2016 10.1016/j.ijhydene.2016.01.041 Thermal analysis of Al2O3-water ethylene glycol mixture nanofluid for single PEM fuel cell cooling plate: an experimental study 

  172. Energy Procedia Islam 2017 10.1016/j.egypro.2017.03.113 Electrical and thermal conductivities of 50/50 water-ethylene glycol based TiO2 nanofluids to be used as coolants in PEM fuel cells 

  173. J. Clean. Prod. Baral 2021 10.1016/j.jclepro.2020.123593 Biomass feedstock transport using fuel cell and battery electric trucks improves lifecycle metrics of biofuel sustainability and economy 

  174. Int. J. Hydrog. Energy Haghi 2020 10.1016/j.ijhydene.2019.05.063 Assessing the potential of fuel cell-powered and battery-powered forklifts for reducing GHG emissions using clean surplus power; a game theory approach 

  175. Therm. Sci. De Risi 2014 High efficiency nanofluid cooling system for wind turbines 

  176. Nanomaterials Álvarez-Regueiro 2019 10.3390/nano9020267 Experimental convection heat transfer analysis of a nano-enhanced industrial coolant 

  177. Appl. Therm. Eng. Vallejo 2019 10.1016/j.applthermaleng.2019.02.046 Functionalized graphene nanoplatelet nanofluids based on a commercial industrial antifreeze for the thermal performance enhancement of wind turbines 

  178. Nature Chu 2012 10.1038/nature11475 Opportunities and challenges for a sustainable energy future 

  179. J. Clean. Prod. Bhandari 2020 10.1016/j.jclepro.2020.123385 Life cycle greenhouse gas emission from wind farms in reference to turbine sizes and capacity factors 

  180. J. Shenzhen Univ. Sci. Eng. Ma 2020 10.3724/SP.J.1249.2020.06653 Benefits of GHGs emission reduction of wind farm based on life cycle assessment 

  181. Holt 897 2003 Encycl. Phys. Sci. Technol. Integrated Gasification Combined-Cycle Power Plants 

  182. Energy Kazemi-Beydokhti 2012 10.1016/j.energy.2012.06.033 Thermal optimization of combined heat and power (CHP) systems using nanofluids 

  183. Int. J. Heat. Mass Transf. Leong 2012 10.1016/j.ijheatmasstransfer.2011.10.027 Modeling of shell and tube heat recovery exchanger operated with nanofluid based coolants 

  184. Int. Commun. Heat. Mass Transf. Yousefi 2017 10.1016/j.icheatmasstransfer.2017.02.004 Modeling and thermo-economic optimization of a biomass heat recovery exchanger operating on Al2O3-water nanofluid 

  185. Geosci. Lett. Wu 2018 10.1186/s40562-018-0114-y Bioenergy production and environmental impacts 

  186. Energy Convers. Manag. Soudagar 2018 10.1016/j.enconman.2018.10.019 The effect of nano-additives in diesel-biodiesel fuel blends: a comprehensive review on stability, engine performance and emission characteristics 

  187. Ain Shams Eng. J. Prabu 2018 10.1016/j.asej.2017.04.004 Nanoparticles as additive in biodiesel on the working characteristics of a DI diesel engine 

  188. Energy Venu 2019 10.1016/j.energy.2019.02.163 Combined effect of influence of nano additives, combustion chamber geometry and injection timing in a DI diesel engine fuelled with ternary (diesel-biodiesel-ethanol) blends 

  189. Appl. Energy Saxena 2019 10.1016/j.apenergy.2019.04.091 Multi-objective optimization of modified nanofluid fuel blends at different TiO2 nanoparticle concentration in diesel engine: experimental assessment and modeling 

  190. Fuel Soudagar 2019 10.1016/j.fuel.2019.116015 The effects of graphene oxide nanoparticle additive stably dispersed in dairy scum oil biodiesel-diesel fuel blend on CI engine: performance, emission and combustion characteristics 

  191. Renew. Energy Hoseini 2020 10.1016/j.renene.2019.06.006 Performance and emission characteristics of a CI engine using graphene oxide (GO) nano-particles additives in biodiesel-diesel blends 

  192. Adv. Mech. Eng. Shafii 2011 10.1155/2011/529049 Effect of ferrofluid on the performance and emission patterns of a four-stroke diesel engine 

  193. Fuel Yang 2013 Emulsion fuel with novel nano-organic additives for diesel engine application 

  194. Renew. Energy Venu 2019 10.1016/j.renene.2019.03.078 Emission reduction in a DI diesel engine using exhaust gas recirculation (EGR) of palm biodiesel blended with TiO2 nano additives 

  195. Renew. Energy Akram 2019 10.1016/j.renene.2019.05.025 Impact of cerium oxide and cerium composite oxide as nano additives on the gaseous exhaust emission profile of waste cooking oil based biodiesel at full engine load conditions 

  196. Atmos. Pollut. Res. Yuvarajan 2018 10.1016/j.apr.2017.06.003 Experimental investigation on the influence of titanium dioxide nanofluid on emission pattern of biodiesel in a diesel engine 

  197. Mater. Today Proc. Karthikeyan 2019 Effect of titanium oxide nanoparticles in tamanu biodiesel operated in a two cylinder diesel engine 

  198. J. Clean. Prod. Janakiraman 2020 10.1016/j.jclepro.2019.118940 Comparative behavior of various nano additives in a DIESEL engine powered by novel Garcinia gummi-gutta biodiesel 

  199. Environ. Sci. Technol. Dale 51 4 1973 2017 10.1021/acs.est.6b03173 Transformation of Cerium Oxide Nanoparticles from a Diesel Fuel Additive during Combustion in a Diesel Engine 

  200. J. Environ. Monit. Kim 2012 10.1039/c2em10809g Characterization and environmental implications of nano- and larger TiO 2 particles in sewage sludge, and soils amended with sewage sludge 

  201. Arab. J. Sci. Eng. Paramashivaiah 2018 10.1007/s13369-018-3121-6 Studies on effect of graphene nanoparticles addition in different levels with simarouba biodiesel and diesel blends on performance, combustion and emission characteristics of CI engine 

  202. Energy Meyer 34 75 2009 10.1016/j.energy.2008.07.018 Exergoenvironmental analysis for evaluation of the environmental impact of energy conversion systems 

  203. J. Risk Res. Bertoldo 19 760 2016 10.1080/13669877.2015.1042503 Great deeds or great risks? Scientists’ social representations of nanotechnology 

  204. Int. J. Toxicol. Card 29 402 2010 10.1177/1091581810370720 A method to assess the quality of studies that examine the toxicity of engineered nanomaterials 

  205. Energy Convers. Manag. Faizal 76 162 2013 10.1016/j.enconman.2013.07.038 Energy, economic and environmental analysis of metal oxides nanofluid for flat-plate solar collector 

  206. J. Therm. Anal. Calorim. Michael Joseph Stalin 2019 10.1007/s10973-017-6865-4 Energy, economic and environmental investigation of a flat plate solar collector with CeO2/water nanofluid 

  207. Appl. Therm. Eng. Sharafeldin 162 2019 10.1016/j.applthermaleng.2019.114205 Evacuated tube solar collector performance using copper nanofluid: energy and environmental analysis 

  208. Energy Boyaghchi 91 685 2015 10.1016/j.energy.2015.08.082 Optimization of a novel combined cooling, heating and power cycle driven by geothermal and solar energies using the water/CuO (copper oxide) nanofluid 

  209. Appl. Therm. Eng. Boyaghchi 112 660 2017 10.1016/j.applthermaleng.2016.10.139 Multi-criteria optimization of a micro solar-geothermal CCHP system applying water/CuO nanofluid based on exergy, exergoeconomic and exergoenvironmental concepts 

  210. Sol. Energy Boyaghchi 166 351 2018 10.1016/j.solener.2018.03.069 Monthly assessments of exergetic, economic and environmental criteria and optimization of a solar micro-CCHP based on DORC 

  211. Desalination Sahota 409 66 2017 10.1016/j.desal.2017.01.012 Energy matrices, enviroeconomic and exergoeconomic analysis of passive double slope solar still with water based nanofluids 

  212. Sol. Energy Mater. Sol. Cells Grosu 2021 10.1016/j.solmat.2020.110838 Nanofluids based on molten carbonate salts for high-temperature thermal energy storage: thermophysical properties, stability, compatibility and life cycle analysis 

  213. Environ. Sci. Technol. Otanicar 43 6082 2009 10.1021/es900031j Comparative environmental and economic analysis of conventional 

  214. Energy Abadeh 159 1234 2018 10.1016/j.energy.2018.06.089 Economic and environmental analysis of using metal-oxides/water nanofluid in photovoltaic thermal systems (PVTs) 

  215. J. Miner. Mater. Charact. Eng. Vishwakarma 09 455 2010 Safety and risk associated with nanoparticles - a review 

  216. Iran. Biomed. J. Bahadar 20 1 2016 Toxicity of nanoparticles and an overview of current experimental models 

  217. Small Weinh. Bergstr. Ger. Pan 3 1941 2007 10.1002/smll.200700378 Size-dependent cytotoxicity of gold nanoparticles 

  218. Langmuir Schaeublin 28 3248 2012 10.1021/la204081m Does shape matter? Bioeffects of gold nanomaterials in a human skin cell model 

  219. Cancino-Bernardi 427 2016 Nanocolloids Current challenges in the commercialization of nanocolloids 

  220. Nano Lett. Magrez 6 1121 2006 10.1021/nl060162e Cellular toxicity of carbon-based nanomaterials 

  221. J. Clean. Prod. Yang 257 2020 10.1016/j.jclepro.2020.120408 An updated review on the properties, fabrication and application of hybrid-nanofluids along with their environmental effects 

  222. Acc. Chem. Res. Kahru 2013 10.1021/ar3000212 Mapping the dawn of nanoecotoxicological research 

  223. J. Colloid Interface Sci. Timofeeva 364 71 2011 10.1016/j.jcis.2011.08.004 Improving the heat transfer efficiency of synthetic oil with silica nanoparticles 

  224. J. Nanopart. Res. Routbort 2011 10.1007/s11051-010-0197-7 Pumping power of nanofluids in a flowing system 

  225. Chem. Eng. Res. Des. Bubbico 104 605 2015 10.1016/j.cherd.2015.10.004 Experimental analysis of corrosion and erosion phenomena on metal surfaces by nanofluids 

  226. Chem. Eng. Res. Des. Celata 92 1616 2014 10.1016/j.cherd.2013.12.003 Experimental results of nanofluids flow effects on metal surfaces 

  227. Front. Energy Res. Markides 3 47 2015 10.3389/fenrg.2015.00047 Low-concentration solar-power systems based on organic Rankine cycles for distributed-scale applications: Overview and further developments 

  228. Appl. Energy Freeman 186 291 2017 10.1016/j.apenergy.2016.04.041 Working fluid selection and electrical performance optimisation of a domestic solar-ORC combined heat and power system for year-round operation in the UK 

  229. J. Clean. Prod. Denbow 276 2020 The potential impact of Molten Salt Reactors on the UK electricity grid 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로