최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Sensors, v.21 no.3, 2021년, pp.684 -
Jeon, Byoungil (Applied Artificial Intelligence Laboratory, Korea Atomic Energy Research Institute, Daejeon 34507, Korea) , Kim, Junha (bijeon@kaeri.re.kr) , Lee, Eunjoong (Department of Environmental Radiation Monitoring and Assessment, Korea Institute of Nuclear Safety, Daejeon 34142, Korea) , Moon, Myungkook (kimjh@kins.re.kr) , Cho, Gyuseong (Decommissioning Technology Research Division, Korea Atomic Energy Research Institute, Daejeon 34507, Korea)
Although plastic scintillation detectors possess poor spectroscopic characteristics, they are extensively used in various fields for radiation measurement. Several methods have been proposed to facilitate their application of plastic scintillation detectors for spectroscopic measurement. However, mo...
1. Siciliano E.R. Ely J.H. Kouzes R.T. Milbrath B.D. Schweppe J.E. Stromswold D.C. Comparison of PVT and NaI (Tl) scintillators for vehicle portal monitor applications Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2005 550 647 674 10.1016/j.nima.2005.05.056
2. Ely J. Kouzes R. Schweppe J. Siciliano E. Strachan D. Weier D. The use of energy windowing to discriminate SNM from NORM in radiation portal monitors Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2006 560 373 387 10.1016/j.nima.2006.01.053
3. Anderson K.K. Jarman K.D. Mann M.L. Pfund D.M. Runkle R.C. Discriminating nuclear threats from benign sources in gamma-ray spectra using a spectral comparison ratio method J. Radioanal. Nucl. Chem. 2008 276 713 718 10.1007/s10967-008-0622-x
4. Hevener R. Yim M.-S. Baird K. Investigation of energy windowing algorithms for effective cargo screening with radiation portal monitors Radiat. Meas. 2013 58 113 120 10.1016/j.radmeas.2013.08.004
5. Shin W.-G. Lee H.-C. Choi C.-I. Park C.S. Kim H.-S. Min C.H. A Monte Carlo study of an energy-weighted algorithm for radionuclide analysis with a plastic scintillation detector Appl. Radiat. Isot. 2015 101 53 59 10.1016/j.apradiso.2015.03.014 25836977
6. Lee H.C. Shin W.-G. Park H.J. Yoo D.H. Choi C.-I. Park C.-S. Kim H.-S. Min C.H. Validation of energy-weighted algorithm for radiation portal monitor using plastic scintillator Appl. Radiat. Isot. 2016 107 160 164 10.1016/j.apradiso.2015.10.019 26516988
7. Paff M.G. Di Fulvio A. Clarke S.D. Pozzi S.A. Radionuclide identification algorithm for organic scintillator-based radiation portal monitor Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2017 849 41 48 10.1016/j.nima.2017.01.009
8. Hamel M. Carrel F. Pseudo-gamma spectrometry in plastic scintillators New Insights on Gamma Rays InTech London, UK 2017 47 66
10. Ruch M.L. Paff M. Sagadevan A. Clarke S.D. Pozzi S.A. Radionuclide identification by an EJ309 organic scintillator-based pedestrian radiation portal monitor using a least squares algorithm Proceedings of the 55th Annual Meeting of Nuclear Materials Management Atlanta, GA, USA 20?24 July 2014 22 24
11. Kangas L.J. Keller P.E. Siciliano E.R. Kouzes R.T. Ely J.H. The use of artificial neural networks in PVT-based radiation portal monitors Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2008 587 398 412 10.1016/j.nima.2008.01.065
12. Kim Y. Kim M. Lim K.T. Kim J. Cho G. Inverse calibration matrix algorithm for radiation detection portal monitors Radiat. Phys. Chem. 2019 155 127 132 10.1016/j.radphyschem.2018.07.022
13. Kim J. Park K. Cho G. Multi-radioisotope identification algorithm using an artificial neural network for plastic gamma spectra Appl. Radiat. Isot. 2019 147 83 90 10.1016/j.apradiso.2019.01.005 30825837
14. Jeon B. Lee Y. Moon M. Kim J. Cho G. Reconstruction of Compton Edges in Plastic Gamma Spectra Using Deep Autoencoder Sensors 2020 20 2895 10.3390/s20102895 32443797
15. Liu X. Gao J. He X. Deng L. Duh K. Wang Y.-Y. Representation Learning Using Multi-Task Deep Neural Networks for Semantic Classification and Information Retrieval Proceedings of the 2015 Conference of the North Americal Chapter of the Association for Computational Linguistics: Human Language Technologies Denver, CO, USA 31 May?5 June 2015 912 921
16. Jacob L. Vert J. Bach F.R. Clustered multi-task learning: A convex formulation Proceedings of the Advances in Neural Information Processing Systems Morgan Kaufmann Publishers Inc. San Francisco, CA, USA 2009 745 752
17. Hashimoto K. Xiong C. Tsuruoka Y. Socher R. A joint many-task model: Growing a neural network for multiple nlp tasks arXiv 2016 1611.01587
18. Deng L. Hinton G. Kingsbury B. New types of deep neural network learning for speech recognition and related applications: An overview Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing Vancouver, BC, Canada 26?31 May 2013 8599 8603
19. Collobert R. Weston J. A unified architecture for natural language processing: Deep neural networks with multitask learning Proceedings of the 25th International Conference on Machine Learning Helsinki, Finland 5?9 July 2008 160 167
20. Rumelhart D.E. Hinton G.E. Williams R.J. Learning Internal Representations by Error Propagation California University San Diego La Jolla Institute for Cognitive Science San Diego, CA, USA 1985
21. Oja E. Simplified neuron model as a principal component analyzer J. Math. Biol. 1982 15 267 273 10.1007/BF00275687 7153672
22. Hinton G.E. Salakhutdinov R.R. Reducing the dimensionality of data with neural networks Science (80-) 2006 313 504 507 10.1126/science.1127647
23. Xu H. Chen W. Zhao N. Li Z. Bu J. Li Z. Liu Y. Zhao Y. Pei D. Feng Y. Unsupervised anomaly detection via variational auto-encoder for seasonal kpis in web applications Proceedings of the 2018 World Wide Web Conference Lyon, France 23?27 April 2018 187 196
24. Sakurada M. Yairi T. Anomaly detection using autoencoders with nonlinear dimensionality reduction Proceedings of the MLSDA 2014 2nd Workshop on Machine Learning for Sensory Data Analysis Gold Coast, Australia 2 December 2014 4 11
25. Vaswani A. Shazeer N. Parmar N. Uszkoreit J. Jones L. Gomez A.N. Kaiser Ł. Polosukhin I. Attention is all you need Advances in Neural Information Processing Systems Morgan Kaufmann Publishers Inc. San Francisco, CA, USA 2017 5998 6008
26. Devlin J. Chang M.-W. Lee K. Toutanova K. Bert: Pre-training of deep bidirectional transformers for language understanding arXiv 2018 1810.04805
27. Zhu X. Su W. Lu L. Li B. Wang X. Dai J. Deformable DETR: Deformable Transformers for End-to-End Object Detection arXiv 2020 2010.04159
28. Chen D. Hua G. Wen F. Sun J. Supervised transformer network for efficient face detection Proceedings of the 14th the European Conference on Computer Vision Amsterdam, The Netherlands 8?16 October 2016 122 138
29. Mousavi S.M. Ellsworth W.L. Zhu W. Chuang L.Y. Beroza G.C. Earthquake transformer―An attentive deep-learning model for simultaneous earthquake detection and phase picking Nat. Commun. 2020 11 1 12 10.1038/s41467-020-17591-w 31911652
30. He K. Zhang X. Ren S. Sun J. Deep residual learning for image recognition Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Las Vegas, NV, USA 27?30 June 2016 770 778
31. Jeon B. Kim J. Moon M. Cho G. Parametric optimization for energy calibration and gamma response function of plastic scintillation detectors using a genetic algorithm Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2019 930 8 14 10.1016/j.nima.2019.03.003
32. Calculator R. Available online: http://www.radprocalculator.com (accessed on 1 July 2020)
33. Werner C.J. Bull J.S. Solomon C.J. Brown F.B. McKinney G.W. Rising M.E. Dixon D.A. Martz R.L. Hughes H.G. Cox L.J. MCNP Version 6.2 Release Notes Los Alamos National Lab.(LANL) Los Alamos, NM, USA 2018
34. McConn R.J. Gesh C.J. Pagh R.T. Rucker R.A. Williams R. III Compendium of Material Composition Data for Radiation Transport Modeling Pacific Northwest National Lab.(PNNL) Richland, WA, USA 2011
35. Abadi M. Agarwal A. Barham P. Brevdo E. Chen Z. Citro C. Corrado G.S. Davis A. Dean J. Devin M. TensorFlow: Large-scale machine learning on heterogeneous systems arXiv 2015 1603.04467
36. Kingma D.P. Ba J. Adam: A method for stochastic optimization arXiv 2014 1412.6980
37. Ioffe S. Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift arXiv 2015 1502.03167
38. Snoek J. Larochelle H. Adams R.P. Practical bayesian optimization of machine learning algorithms Proceedings of the Advances in Neural Information Processing Systems Morgan Kaufmann Publishers Inc. San Francisco, CA, USA 2012 2951 2959
39. Kirkpatrick J.M. Venkataraman R. Young B.M. Minimum detectable activity, systematic uncertainties, and the ISO 11929 standard J. Radioanal. Nucl. Chem. 2013 296 1005 1010 10.1007/s10967-012-2083-5
40. Keyser R.M. Sergent F. Twomey T.R. Upp D.L. Minimum detectable activity estimates for a germanium-detector based spectroscopic portal monitor Proceedings of the INMM 47th Annual Meeting Conference Record Nashville, TN, USA 6?7 November 2006
41. Casanovas R. Morant J.J. Salvado M. Temperature peak-shift correction methods for NaI (Tl) and LaBr3 (Ce) gamma-ray spectrum stabilisation Radiat. Meas. 2012 47 588 595 10.1016/j.radmeas.2012.06.001
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.