$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Recent Developments in Nanocellulose-Reinforced Rubber Matrix Composites: A Review 원문보기

Polymers, v.13 no.4, 2021년, pp.550 -   

Low, Darren Yi Sern (School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor Darul Ehsan, Malaysia) ,  Supramaniam, Janarthanan (darrenl333.dl@gmail.com) ,  Soottitantawat, Apinan (Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia) ,  Charinpanitkul, Tawatchai (janarthanan.supramaniam@monash.edu) ,  Tanthapanichakoon, Wiwut (Center of Excellence in Particle Technology and Materials Processing, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand) ,  Tan, Khang Wei (apinan.s@chula.ac.th (A.S.)) ,  Tang, Siah Ying (tawatchai.c@chula.ac.th (T.C.))

Abstract AI-Helper 아이콘AI-Helper

Research and development of nanocellulose and nanocellulose-reinforced composite materials have garnered substantial interest in recent years. This is greatly attributed to its unique functionalities and properties, such as being renewable, sustainable, possessing high mechanical strengths, having l...

주제어

참고문헌 (167)

  1. 1. Martu G.A. Mihai M. Vodnar D.C. The Use of Chitosan, Alginate, and Pectin in the Biomedical and Food Sector-Biocompatibility, Bioadhesiveness, and Biodegradability Polymers 2019 11 1837 10.3390/polym11111837 31717269 

  2. 2. Thomas P. Duolikun T. Rumjit N.P. Moosavi S. Lai C.W. Bin Johan M.R. Fen L.B. Comprehensive review on nanocellulose: Recent developments, challenges and future prospects J. Mech. Behav. Biomed. Mater. 2020 110 103884 10.1016/j.jmbbm.2020.103884 32957191 

  3. 3. Sharma A. Thakur M. Bhattacharya M. Mandal T. Goswami S. Commercial application of cellulose nano-composites–A review Biotechnol. Rep. 2019 21 e00316 10.1016/j.btre.2019.e00316 30847286 

  4. 4. Nunes R.C.R. Rubber nanocomposites with nanocellulose Progress in Rubber Nanocomposites Thomas S. Maria H.J. Woodhead Publishing Cambridge, UK 2017 463 494 

  5. 5. Trache D. Tarchoun A.F. Derradji M. Hamidon T.S. Masruchin N. Brosse N. Hussin M.H. Nanocellulose: From Fundamentals to Advanced Applications Front. Chem. 2020 8 1 33 10.3389/fchem.2020.00392 32117862 

  6. 6. Abdul Salim Z.A.S. Hassan A. Ismail H. A Review on Hybrid Fillers in Rubber Composites Polym. Plast. Technol. 2018 57 523 539 10.1080/03602559.2017.1329432 

  7. 7. Kawano M. Changing Resource-Based Manufacturing Industry: The Case of the Rubber Industry in Malaysia and Thailand Emerging States at Crossroads Tsunekawa K. Todo Y. Springer Singapore 2019 145 162 

  8. 8. Feldman D. Natural rubber nanocomposites J. Macromol. Sci. A 2017 54 629 634 10.1080/10601325.2017.1316671 

  9. 9. Yamashita S. Takahashi S. Molecular Mechanisms of Natural Rubber Biosynthesis Annu. Rev. Biochem. 2020 89 821 851 10.1146/annurev-biochem-013118-111107 32228045 

  10. 10. Men X. Wang F. Chen G.-Q. Zhang H.-B. Xian M. Biosynthesis of Natural Rubber: Current State and Perspectives Int. J. Mol. Sci. 2019 20 50 10.3390/ijms20010050 

  11. 11. Tang C. Yang M. Fang Y. Luo Y. Gao S. Xiao X. An Z. Zhou B. Zhang B. Tan X. The rubber tree genome reveals new insights into rubber production and species adaptation Nat. Plants 2016 2 16073 10.1038/nplants.2016.73 27255837 

  12. 12. Soratana K. Rasutis D. Azarabadi H. Eranki P.L. Landis A.E. Guayule as an alternative source of natural rubber: A comparative life cycle assessment with Hevea and synthetic rubber J. Clean Prod. 2017 159 271 280 10.1016/j.jclepro.2017.05.070 

  13. 13. Ramirez-Cadavid D.A. Cornish K. Michel F.C. Taraxacum kok-saghyz (TK): Compositional analysis of a feedstock for natural rubber and other bioproducts Ind. Crops Prod. 2017 107 624 640 10.1016/j.indcrop.2017.05.043 

  14. 14. Sarkar P. Bhowmick A.K. Sustainable rubbers and rubber additives J. Appl. Polym. Sci. 2018 135 45701 10.1002/app.45701 

  15. 15. Ibrahim S. Othman N. Sreekantan S. Tan K.S. Mohd Nor Z. Ismail H. Preparation and Characterization of Low-Molecular-Weight Natural Rubber Latex via Photodegradation Catalyzed by Nano TiO2 Polymers 2018 10 1216 10.3390/polym10111216 30961141 

  16. 16. Samsuri A. Degradation of Natural Rubber and Synthetic Elastomers Shreir’s Corrosion Richardson T. Elsevier Amsterdam, The Netherlands 2010 Volume 3 2407 2438 

  17. 17. Song K. Micro- and nano-fillers used in the rubber industry Progress in Rubber Nanocomposites Thomas S. Maria H.J. Woodhead Publishing Cambridge, UK 2017 41 80 

  18. 18. Masłowski M. Miedzianowska J. Strzelec K. Natural Rubber Composites Filled with Crop Residues as an Alternative to Vulcanizates with Common Fillers Polymers 2019 11 972 10.3390/polym11060972 

  19. 19. Fan Y. Fowler G.D. Zhao M. The past, present and future of carbon black as a rubber reinforcing filler—A review J. Clean Prod. 2020 247 119115 10.1016/j.jclepro.2019.119115 

  20. 20. Zhong B. Jia Z. Luo Y. Jia D. Liu F. Understanding the effect of filler shape induced immobilized rubber on the interfacial and mechanical strength of rubber composites Polym. Test. 2017 58 31 39 10.1016/j.polymertesting.2016.12.010 

  21. 21. Mermet-Guyennet M.R.B. Gianfelice de Castro J. Varol H.S. Habibi M. Hosseinkhani B. Martzel N. Sprik R. Denn M.M. Zaccone A. Parekh S.H. Size-dependent reinforcement of composite rubbers Polymer 2015 73 170 173 10.1016/j.polymer.2015.07.041 

  22. 22. Bokobza L. Natural Rubber Nanocomposites: A Review Nanomaterials 2018 9 12 10.3390/nano9010012 

  23. 23. Barrera C.S. Cornish K. Processing and mechanical properties of natural rubber/waste-derived nano filler composites compared to macro and micro filler composites Ind. Crops Prod. 2017 107 217 231 10.1016/j.indcrop.2017.05.045 

  24. 24. Khan I. Bhat A.H. Micro and Nano Calcium Carbonate Filled Natural Rubber Composites and Nanocomposites Natural Rubber Materials: Composites and Nanocomposites Thomas S. Chan C.H. Pothen L. Joy J. Maria H. The Royal Society of Chemistry Cambridge, UK 2013 Volume 2 467 487 

  25. 25. Sinclair A. Zhou X. Tangpong S. Bajwa D.S. Quadir M. Jiang L. High-Performance Styrene-Butadiene Rubber Nanocomposites Reinforced by Surface-Modified Cellulose Nanofibers ACS Omega 2019 4 13189 13199 10.1021/acsomega.9b01313 31460446 

  26. 26. Fumagalli M. Berriot J. de Gaudemaris B. Veyland A. Putaux J.-L. Molina-Boisseau S. Heux L. Rubber materials from elastomers and nanocellulose powders: Filler dispersion and mechanical reinforcement Soft Matter 2018 14 2638 2648 10.1039/C8SM00210J 29547224 

  27. 27. Rattanasom N. Prasertsri S. Ruangritnumchai T. Comparison of the mechanical properties at similar hardness level of natural rubber filled with various reinforcing-fillers Polym. Test. 2009 28 8 12 10.1016/j.polymertesting.2008.08.004 

  28. 28. Jiang W. Gu J. Nanocrystalline cellulose isolated from different renewable sources to fabricate natural rubber composites with outstanding mechanical properties Cellulose 2020 27 5801 5813 10.1007/s10570-020-03209-3 

  29. 29. Sahakaro K. Mechanism of reinforcement using nanofillers in rubber nanocomposites Progress in Rubber Nanocomposites Thomas S. Maria H.J. Woodhead Publishing Cambridge, UK 2017 81 113 

  30. 30. Farida E. Bukit N. Ginting E.M. Bukit B.F. The effect of carbon black composition in natural rubber compound Case Stud. Therm. Eng. 2019 16 100566 10.1016/j.csite.2019.100566 

  31. 31. Balasooriya W. Schrittesser B. Pinter G. Schwarz T. Conzatti L. The Effect of the Surface Area of Carbon Black Grades on HNBR in Harsh Environments Polymers 2019 11 61 10.3390/polym11010061 

  32. 32. Singh M. Vander Wal R.L. Nanostructure Quantification of Carbon Blacks J. Carbon Res. 2019 5 2 10.3390/c5010002 

  33. 33. Bera M. Gupta P. Maji P. Structural/Load-Bearing Characteristics of Polymer–Carbon Composites Carbon-Containing Polymer Composites Mostafizur R. Dipak K. Ali Kanakhir A. Springer Singapore 2018 457 502 

  34. 34. Savetlana S. Zulhendri Sukmana I. Saputra F.A. The effect of carbon black loading and structure on tensile property of natural rubber composite IOP Conf. Ser. Mater. Sci. Eng. 2017 223 012009 10.1088/1757-899X/223/1/012009 

  35. 35. Hess W.M. McDonald G.C. Improved Particle Size Measurements on Pigments for Rubber Rubber Chem. Technol. 1983 56 892 917 10.5254/1.3538171 

  36. 36. Wang M.-J. Gray C.A. Reznek S.A. Mahmud K. Kutsovsky Y. Carbon Black Kirk-Othmer Encyclopedia of Chemical Technology John Wiley & Sons Hoboken, NJ, USA 2003 Volume 4 761 803 

  37. 37. Sarkawi S. Kaewsakul W. Sahakaro K. Dierkes W. Noordermeer J. A Review on Reinforcement of Natural Rubber by Silica Fillers for Use in Low-Rolling Resistance Tires J. Rubber Res. 2015 18 203 233 

  38. 38. van Hoek J.W. Heideman G. Noordermeer J.W.M. Dierkes W.K. Blume A. Implications of the Use of Silica as Active Filler in Passenger Car Tire Compounds on Their Recycling Options Materials 2019 12 725 10.3390/ma12050725 

  39. 39. Qu L. Wang L. Xie X. Yu G. Bu S. Contribution of silica–rubber interactions on the viscoelastic behaviors of modified solution polymerized styrene butadiene rubbers (M-S-SBRs) filled with silica RSC Adv. 2014 4 64354 64363 10.1039/C4RA09492A 

  40. 40. Majesté J.-C. Vincent F. A kinetic model for silica-filled rubber reinforcement J. Rheol. 2015 59 405 427 10.1122/1.4906621 

  41. 41. Kaewsakul W. Sahakaro K. Dierkes W. Noordermeer J. Optimization of rubber formulation for silica-reinforced natural rubber compounds Rubber Chem. Technol. 2013 86 313 329 10.5254/RCT.13.87970 

  42. 42. Bansod N.D. Kapgate B.P. Maji P.K. Bandyopadhyay A. Das C. Functionalization of EPDM Rubber toward Better Silica Dispersion and Reinforcement Rubber Chem. Technol. 2018 92 219 236 10.5254/rct.18.81564 

  43. 43. Maghami S. Dierkes W.K. Noordermeer J.W.M. Functionalized SBRs in Silica-reinforced Tire Thread Compounds: Evidence for Interactions between Silica Filler and Zinc Oxide Rubber Chem. Technol. 2016 89 559 572 10.5254/rct.16.84810 

  44. 44. Qu L. Yu G. Wang L. Li C. Zhao Q. Li J. Effect of filler–elastomer interactions on the mechanical and nonlinear viscoelastic behaviors of chemically modified silica-reinforced solution-polymerized styrene butadiene rubber J. Appl. Polym. Sci. 2012 126 116 126 10.1002/app.36677 

  45. 45. Qian M. Huang W. Wang J. Wang X. Liu W. Zhu Y. Surface Treatment Effects on the Mechanical Properties of Silica Carbon Black Reinforced Natural Rubber/Butadiene Rubber Composites Polymers 2019 11 1763 10.3390/polym11111763 

  46. 46. Jansomboon W. Loykulnant S. Kongkachuichay P. Dittanet P. Prapainainar P. Electron beam radiation curing of natural rubber filled with silica-graphene mixture prepared by latex mixing Ind. Crops Prod. 2019 141 111789 10.1016/j.indcrop.2019.111789 

  47. 47. Li Y. Han B. Wen S. Lu Y. Yang H. Zhang L. Liu L. Effect of the temperature on surface modification of silica and properties of modified silica filled rubber composites Compos. Part A Appl. Sci. Manuf. 2014 62 52 59 10.1016/j.compositesa.2014.03.007 

  48. 48. Szymaska-Chargot M. Ciela J. Chyliska M. Gdula K. Pieczywek P.M. Kozioł A. Cielak K.J. Zdunek A. Effect of ultrasonication on physicochemical properties of apple based nanocellulose-calcium carbonate composites Cellulose 2018 25 4603 4621 10.1007/s10570-018-1900-6 

  49. 49. Blanco A. Monte M.C. Campano C. Balea A. Merayo N. Negro C. Nanocellulose for Industrial Use: Cellulose Nanofibers (CNF), Cellulose Nanocrystals (CNC), and Bacterial Cellulose (BC) Handbook of Nanomaterials for Industrial Applications Mustansar Hussain C. Elsevier Amsterdam, The Netherlands 2018 74 126 

  50. 50. Thakur M.K. Thakur V.K. Prasanth R. Nanocellulose-Based Polymer Nanocomposites: An Introduction Nanocellulose Polymer Nanocomposites Thakur V.K. Scrivener Publishing Hoboken, NJ, USA 2014 1 15 

  51. 51. Michelin M. Gomes D.G. Romaní A. Polizeli M.d.L.T.M. Teixeira J.A. Nanocellulose Production: Exploring the Enzymatic Route and Residues of Pulp and Paper Industry Molecules 2020 25 3411 10.3390/molecules25153411 32731405 

  52. 52. Gopi S. Balakrishnan P. Chandradhara D. Poovathankandy D. Thomas S. General scenarios of cellulose and its use in the biomedical field Mater. Today Chem. 2019 13 59 78 10.1016/j.mtchem.2019.04.012 

  53. 53. George J. Sabapathi S.N. Cellulose nanocrystals: Synthesis, functional properties, and applications Nanotechnol. Sci. Appl. 2015 8 45 54 10.2147/NSA.S64386 26604715 

  54. 54. Hindi S. The Interconvertiblity of Cellulose’s Allomorphs Int. J. Innov. Res. Sci. Eng. Technol. 2017 6 715 722 

  55. 55. Mukarakate C. Mittal A. Ciesielski P.N. Budhi S. Thompson L. Iisa K. Nimlos M.R. Donohoe B.S. Influence of Crystal Allomorph and Crystallinity on the Products and Behavior of Cellulose during Fast Pyrolysis ACS Sustain. Chem. Eng. 2016 4 4662 4674 10.1021/acssuschemeng.6b00812 

  56. 56. Miyashiro D. Hamano R. Umemura K. A Review of Applications Using Mixed Materials of Cellulose, Nanocellulose and Carbon Nanotubes Nanomaterials 2020 10 186 10.3390/nano10020186 31973149 

  57. 57. Jonoobi M. Oladi R. Davoudpour Y. Oksman K. Dufresne A. Hamzeh Y. Davoodi R. Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: A review Cellulose 2015 22 935 969 10.1007/s10570-015-0551-0 

  58. 58. Mokhena T.C. Sefadi J.S. Sadiku E.R. John M. Mochane M.J. Mtibe A. Thermoplastic Processing of PLA/Cellulose Nanomaterials Composites Polymers 2018 10 1363 10.3390/polym10121363 

  59. 59. Bregado J.L. Secchi A.R. Tavares F.W. de Sousa Rodrigues D. Gambetta R. Amorphous paracrystalline structures from native crystalline cellulose: A molecular dynamics protocol Fluid Phase Equilib. 2019 491 56 76 10.1016/j.fluid.2019.03.011 

  60. 60. Paniz O.G. Pereira C.M.P. Pacheco B.S. Wolke S.I. Maron G.K. Mansilla A. Colepicolo P. Orlandi M.O. Osorio A.G. Carreño N.L.V. Cellulosic material obtained from Antarctic algae biomass Cellulose 2020 27 113 126 10.1007/s10570-019-02794-2 

  61. 61. Wahlström N. Edlund U. Pavia H. Toth G. Jaworski A. Pell A.J. Choong F.X. Shirani H. Nilsson K.P.R. Richter-Dahlfors A. Cellulose from the green macroalgae Ulva lactuca: Isolation, characterization, optotracing, and production of cellulose nanofibrils Cellulose 2020 27 3707 3725 10.1007/s10570-020-03029-5 

  62. 62. Choi S.M. Shin E.J. The Nanofication and Functionalization of Bacterial Cellulose and Its Applications Nanomaterials 2020 10 406 10.3390/nano10030406 32106515 

  63. 63. Han Y.-H. Mao H.-L. Wang S.-S. Deng J.-C. Chen D.-L. Li M. Ecofriendly green biosynthesis of bacterial cellulose by Komagataeibacter xylinus B2-1 using the shell extract of Sapindus mukorossi Gaertn. as culture medium Cellulose 2020 27 1255 1272 10.1007/s10570-019-02868-1 

  64. 64. Gorgieva S. Trek J. Bacterial Cellulose: Production, Modification and Perspectives in Biomedical Applications Nanomaterials 2019 9 1352 10.3390/nano9101352 

  65. 65. Ng H.-M. Sin L.T. Tee T.-T. Bee S.-T. Hui D. Low C.-Y. Rahmat A.R. Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers Compos. Part B Eng. 2015 75 176 200 10.1016/j.compositesb.2015.01.008 

  66. 66. Solala I. Iglesias M.C. Peresin M.S. On the potential of lignin-containing cellulose nanofibrils (LCNFs): A review on properties and applications Cellulose 2020 27 1853 1877 10.1007/s10570-019-02899-8 

  67. 67. Dunlop M.J. Acharya B. Bissessur R. Isolation of nanocrystalline cellulose from tunicates J. Environ. Chem. Eng. 2018 6 4408 4412 10.1016/j.jece.2018.06.056 

  68. 68. Zhao Y. Li J. Excellent chemical and material cellulose from tunicates: Diversity in cellulose production yield and chemical and morphological structures from different tunicate species Cellulose 2014 21 3427 3441 10.1007/s10570-014-0348-6 

  69. 69. Abitbol T. Rivkin A. Cao Y. Nevo Y. Abraham E. Ben-Shalom T. Lapidot S. Shoseyov O. Nanocellulose, a tiny fiber with huge applications Curr. Opin. Biotechnol. 2016 39 76 88 10.1016/j.copbio.2016.01.002 26930621 

  70. 70. Kargarzadeh H. Ioelovich M. Ahmad I. Thomas S. Dufresne A. Methods for Extraction of Nanocellulose from Various Sources Handbook of Nanocellulose and Cellulose Nanocomposites Kargarzadeh H. Ahmad I. Thomas S. Dufresne A. Wiley-VCH Verlag GmbH & Co. KGaA Weinheim, Germany 2017 Volume 1 1 49 

  71. 71. Patel D.K. Dutta S.D. Lim K.-T. Nanocellulose-based polymer hybrids and their emerging applications in biomedical engineering and water purification RSC Adv. 2019 9 19143 19162 10.1039/C9RA03261D 

  72. 72. Lee K.-Y. Aitomäki Y. Berglund L.A. Oksman K. Bismarck A. On the use of nanocellulose as reinforcement in polymer matrix composites Compos. Sci. Technol. 2014 105 15 27 10.1016/j.compscitech.2014.08.032 

  73. 73. Zinge C. Kandasubramanian B. Nanocellulose based biodegradable polymers Eur. Polym. J. 2020 133 109758 10.1016/j.eurpolymj.2020.109758 

  74. 74. Dominic M. Joseph R. Sabura Begum P.M. Kanoth B.P. Chandra J. Thomas S. Green tire technology: Effect of rice husk derived nanocellulose (RHNC) in replacing carbon black (CB) in natural rubber (NR) compounding Carbohydr. Polym. 2020 230 115620 10.1016/j.carbpol.2019.115620 31887961 

  75. 75. Zhang K. Barhoum A. Xiaoqing C. Li H. Samyn P. Cellulose Nanofibers: Fabrication and Surface Functionalization Techniques Handbook of Nanofibers Barhoum A. Bechelany M. Makhlouf A.S.H. Springer Nature Switzerland AG Cham, Switzerland 2019 409 449 

  76. 76. Gopakumar D.A. Thomas S. Grohens Y. Nanocelluloses as Innovative Polymers for Membrane Applications Multifunctional Polymeric Nanocomposites Based on Cellulosic Reinforcements Puglia D. Fortunati E. Kenny J.M. William Andrew Publishing Norwich, NY, USA 2016 253 275 

  77. 77. Supramaniam J. Wong S.K. Leo B.F. Tan L.T.H. Goh B.H. Tang S.Y. Unravelling the Swelling Behaviour and Antibacterial Activity of Palm Cellulose Nanofiber-based Metallic Nanocomposites IOP Conf. Ser. Mater. Sci. Eng. 2020 778 012027 10.1088/1757-899X/778/1/012027 

  78. 78. Stanisławska A. Bacterial Nanocellulose as a Microbiological Derived Nanomaterial Adv. Mater. Sci. 2016 16 45 57 10.1515/adms-2016-0022 

  79. 79. Klemm D. Cranston E.D. Fischer D. Gama M. Kedzior S.A. Kralisch D. Kramer F. Kondo T. Lindström T. Nietzsche S. Nanocellulose as a natural source for groundbreaking applications in materials science: Today’s state Mater. Today 2018 21 720 748 10.1016/j.mattod.2018.02.001 

  80. 80. Siró I. Plackett D. Microfibrillated cellulose and new nanocomposite materials: A review Cellulose 2010 17 459 494 10.1007/s10570-010-9405-y 

  81. 81. Kucharska K. Rybarczyk P. Hołowacz I. Łukajtis R. Glinka M. Kamiski M. Pretreatment of Lignocellulosic Materials as Substrates for Fermentation Processes Molecules 2018 23 2937 10.3390/molecules23112937 

  82. 82. Ahmad E. Pant K.K. Lignin Conversion: A Key to the Concept of Lignocellulosic Biomass-Based Integrated Biorefinery Waste Biorefinery Bhaskar T. Pandey A. Mohan S.V. Lee D.-J. Khanal S.K. Elsevier Amsterdam, The Netherlands 2018 409 444 

  83. 83. Watkins D. Nuruddin M. Hosur M. Tcherbi-Narteh A. Jeelani S. Extraction and characterization of lignin from different biomass resources J. Mater. Res. Technol. 2015 4 26 32 10.1016/j.jmrt.2014.10.009 

  84. 84. Martelli-Tosi M. Torricillas M.d.S. Martins M.A. Assis O.B.G.d. Tapia-Blácido D.R. Using Commercial Enzymes to Produce Cellulose Nanofibers from Soybean Straw J. Nanomater. 2016 2016 8106814 10.1155/2016/8106814 

  85. 85. Kumar A.K. Sharma S. Recent updates on different methods of pretreatment of lignocellulosic feedstocks: A review Bioresour. Bioprocess. 2017 4 7 10.1186/s40643-017-0137-9 28163994 

  86. 86. Baruah J. Nath B.K. Sharma R. Kumar S. Deka R.C. Baruah D.C. Kalita E. Recent Trends in the Pretreatment of Lignocellulosic Biomass for Value-Added Products Front. Energy Res. 2018 6 1 19 10.3389/fenrg.2018.00141 

  87. 87. Sofla M.R.K. Brown R.J. Tsuzuki T. Rainey T.J. A comparison of cellulose nanocrystals and cellulose nanofibres extracted from bagasse using acid and ball milling methods Adv. Nat. Sci-Nanosci. 2016 7 035004 10.1088/2043-6262/7/3/035004 

  88. 88. Beltramino F. Roncero M.B. Torres A.L. Vidal T. Valls C. Optimization of sulfuric acid hydrolysis conditions for preparation of nanocrystalline cellulose from enzymatically pretreated fibers Cellulose 2016 23 1777 1789 10.1007/s10570-016-0897-y 

  89. 89. Houfani A.A. Anders N. Spiess A.C. Baldrian P. Benallaoua S. Insights from enzymatic degradation of cellulose and hemicellulose to fermentable sugars—A review Biomass Bioenergy 2020 134 105481 10.1016/j.biombioe.2020.105481 

  90. 90. Arfi Y. Shamshoum M. Rogachev I. Peleg Y. Bayer E.A. Integration of bacterial lytic polysaccharide monooxygenases into designer cellulosomes promotes enhanced cellulose degradation Proc. Natl. Acad. Sci. USA 2014 111 9109 10.1073/pnas.1404148111 24927597 

  91. 91. Carlsson D.O. Lindh J. Nyholm L. Strømme M. Mihranyan A. Cooxidant-free TEMPO-mediated oxidation of highly crystalline nanocellulose in water RSC Adv. 2014 4 52289 52298 10.1039/C4RA11182F 

  92. 92. Mhd Haniffa M.A.C. Ching Y.C. Chuah C.H. Yong Ching K. Nazri N. Abdullah L.C. Nai-Shang L. Effect of TEMPO-oxidization and rapid cooling on thermo-structural properties of nanocellulose Carbohydr. Polym. 2017 173 91 99 10.1016/j.carbpol.2017.05.084 28732923 

  93. 93. Low L.E. Wong S.K. Tang S.Y. Chew C.L. De Silva H.A. Lee J.M.V. Hoo C.H. Kenrick K. Production of highly uniform Pickering emulsions by novel high-intensity ultrasonic tubular reactor (HUTR) Ultrason. Sonochem. 2019 54 121 128 10.1016/j.ultsonch.2019.02.008 30827901 

  94. 94. Zheng D. Zhang Y. Guo Y. Yue J. Isolation and Characterization of Nanocellulose with a Novel Shape from Walnut (Juglans Regia L.) Shell Agricultural Waste Polymers 2019 11 1130 10.3390/polym11071130 

  95. 95. Ma Y. Xia Q. Liu Y. Chen W. Liu S. Wang Q. Liu Y. Li J. Yu H. Production of Nanocellulose Using Hydrated Deep Eutectic Solvent Combined with Ultrasonic Treatment ACS Omega 2019 4 8539 8547 10.1021/acsomega.9b00519 31459944 

  96. 96. Shojaeiarani J. Bajwa D. Holt G. Sonication amplitude and processing time influence the cellulose nanocrystals morphology and dispersion Nanocomposites 2020 6 41 46 10.1080/20550324.2019.1710974 

  97. 97. Zhuo X. Liu C. Pan R. Dong X. Li Y. Nanocellulose Mechanically Isolated from Amorpha fruticosa Linn ACS Sustain. Chem. Eng. 2017 5 4414 4420 10.1021/acssuschemeng.7b00478 

  98. 98. Ang S. Haritos V. Batchelor W. Effect of refining and homogenization on nanocellulose fiber development, sheet strength and energy consumption Cellulose 2019 26 4767 4786 10.1007/s10570-019-02400-5 

  99. 99. Taheri H. Samyn P. Effect of homogenization (microfluidization) process parameters in mechanical production of micro- and nanofibrillated cellulose on its rheological and morphological properties Cellulose 2016 23 1221 1238 10.1007/s10570-016-0866-5 

  100. 100. Angel N. Guo L. Yan F. Wang H. Kong L. Effect of processing parameters on the electrospinning of cellulose acetate studied by response surface methodology J. Agr. Food Res. 2020 2 100015 10.1016/j.jafr.2019.100015 

  101. 101. Prasanth R. Nageswaran S. Thakur V.K. Ahn J.-H. Electrospinning of Cellulose: Process and Applications Nanocellulose Polymer Nanocomposites Thakur V.K. Scrivener Publishing Hoboken, NY, USA 2014 311 340 

  102. 102. Ho T.T.T. Abe K. Zimmermann T. Yano H. Nanofibrillation of pulp fibers by twin-screw extrusion Cellulose 2015 22 421 433 10.1007/s10570-014-0518-6 

  103. 103. Rol F. Karakashov B. Nechyporchuk O. Terrien M. Meyer V. Dufresne A. Belgacem M.N. Bras J. Pilot-Scale Twin Screw Extrusion and Chemical Pretreatment as an Energy-Efficient Method for the Production of Nanofibrillated Cellulose at High Solid Content ACS Sustain. Chem. Eng. 2017 5 6524 6531 10.1021/acssuschemeng.7b00630 

  104. 104. Rol F. Vergnes B. El Kissi N. Bras J. Nanocellulose Production by Twin-Screw Extrusion: Simulation of the Screw Profile To Increase the Productivity ACS Sustain. Chem. Eng. 2020 8 50 59 10.1021/acssuschemeng.9b01913 

  105. 105. Rol F. Saini S. Meyer V. Petit-Conil M. Bras J. Production of cationic nanofibrils of cellulose by twin-screw extrusion Ind. Crops Prod. 2019 137 81 88 10.1016/j.indcrop.2019.04.031 

  106. 106. Debiagi F. Faria-Tischer P.C.S. Mali S. A Green Approach Based on Reactive Extrusion to Produce Nanofibrillated Cellulose from Oat Hull Waste Biomass Valor. 2020 1 10 10.1007/s12649-020-01025-1 

  107. 107. Jacek P. Dourado F. Gama M. Bielecki S. Molecular aspects of bacterial nanocellulose biosynthesis Microb. Biotechnol. 2019 12 633 649 10.1111/1751-7915.13386 30883026 

  108. 108. Wang S.-S. Han Y.-H. Chen J.-L. Zhang D.-C. Shi X.-X. Ye Y.-X. Chen D.-L. Li M. Insights into Bacterial Cellulose Biosynthesis from Different Carbon Sources and the Associated Biochemical Transformation Pathways in Komagataeibacter sp. W1 Polymers 2018 10 963 10.3390/polym10090963 

  109. 109. Singhsa P. Narain R. Manuspiya H. Bacterial Cellulose Nanocrystals (BCNC) Preparation and Characterization from Three Bacterial Cellulose Sources and Development of Functionalized BCNCs as Nucleic Acid Delivery Systems ACS Appl. Nano. Mater. 2018 1 209 221 10.1021/acsanm.7b00105 

  110. 110. Rovera C. Ghaani M. Santo N. Trabattoni S. Olsson R.T. Romano D. Farris S. Enzymatic Hydrolysis in the Green Production of Bacterial Cellulose Nanocrystals ACS Sustain. Chem. Eng. 2018 6 7725 7734 10.1021/acssuschemeng.8b00600 

  111. 111. Reiniati I. Hrymak A.N. Margaritis A. Recent developments in the production and applications of bacterial cellulose fibers and nanocrystals Crit. Rev. Biotechnol. 2017 37 510 524 10.1080/07388551.2016.1189871 27248159 

  112. 112. Ribeiro R.S.A. Pohlmann B.C. Calado V. Bojorge N. Pereira N. Jr. Production of nanocellulose by enzymatic hydrolysis: Trends and challenges Eng. Life Sci. 2019 19 279 291 10.1002/elsc.201800158 32625008 

  113. 113. Domingues A.A. Pereira F.V. Sierakowski M.R. Rojas O.J. Petri D.F.S. Interfacial properties of cellulose nanoparticles obtained from acid and enzymatic hydrolysis of cellulose Cellulose 2016 23 2421 2437 10.1007/s10570-016-0965-3 

  114. 114. Cicero S. Fuentes J.D. Torabi A.R. Using the Equivalent Material Concept and the Average Strain Energy Density to Analyse the Fracture Behaviour of Structural Materials Appl. Sci. 2020 10 1601 10.3390/app10051601 

  115. 115. Koblar D. Skofic J. Boltezar M. Evaluation of the Young′s Modulus of Rubber-Like Materials Bonded to Rigid Surfaces with Respect to Poisson’s Ratio Stroj. Vestn. J. Mech. Eng. 2014 60 506 511 10.5545/sv-jme.2013.1510 

  116. 116. Flauzino Neto W.P. Mariano M. da Silva I.S.V. Silvério H.A. Putaux J.-L. Otaguro H. Pasquini D. Dufresne A. Mechanical properties of natural rubber nanocomposites reinforced with high aspect ratio cellulose nanocrystals isolated from soy hulls Carbohydr. Polym. 2016 153 143 152 10.1016/j.carbpol.2016.07.073 27561481 

  117. 117. Kato H. Nakatsubo F. Abe K. Yano H. Crosslinking via sulfur vulcanization of natural rubber and cellulose nanofibers incorporating unsaturated fatty acids RSC Adv. 2015 5 29814 29819 10.1039/C4RA14867C 

  118. 118. Zhang B. Huang C. Zhao H. Wang J. Yin C. Zhang L. Zhao Y. Effects of Cellulose Nanocrystals and Cellulose Nanofibers on the Structure and Properties of Polyhydroxybutyrate Nanocomposites Polymers 2019 11 2063 10.3390/polym11122063 31835805 

  119. 119. Kulshrestha U. Gupta T. Kumawat P. Jaiswal H. Ghosh S.B. Sharma N.N. Cellulose nanofibre enabled natural rubber composites: Microstructure, curing behaviour and dynamic mechanical properties Polym. Test. 2020 90 106676 10.1016/j.polymertesting.2020.106676 

  120. 120. Cao L. Huang J. Chen Y. Dual Cross-linked Epoxidized Natural Rubber Reinforced by Tunicate Cellulose Nanocrystals with Improved Strength and Extensibility ACS Sustain. Chem. Eng. 2018 6 14802 14811 10.1021/acssuschemeng.8b03331 

  121. 121. Parambath Kanoth B. Claudino M. Johansson M. Berglund L.A. Zhou Q. Biocomposites from Natural Rubber: Synergistic Effects of Functionalized Cellulose Nanocrystals as Both Reinforcing and Cross-Linking Agents via Free-Radical Thiol–ene Chemistry ACS Appl. Mater. Interfaces 2015 7 16303 16310 10.1021/acsami.5b03115 26151647 

  122. 122. Jardin J.M. Zhang Z. Hu G. Tam K.C. Mekonnen T.H. Reinforcement of rubber nanocomposite thin sheets by percolation of pristine cellulose nanocrystals Int. J. Biol. Macromol. 2020 152 428 436 10.1016/j.ijbiomac.2020.02.303 32112834 

  123. 123. Yu P. He H. Luo Y. Jia D. Dufresne A. Reinforcement of Natural Rubber: The Use of in Situ Regenerated Cellulose from Alkaline–Urea–Aqueous System Macromolecules 2017 50 7211 7221 10.1021/acs.macromol.7b01663 

  124. 124. Dominic M. Joseph R. Begum P.M.S. Joseph M. Padmanabhan D. Morris L.A. Kumar A.S. Formela K. Cellulose Nanofibers Isolated from the Cuscuta Reflexa Plant as a Green Reinforcement of Natural Rubber Polymers 2020 12 814 10.3390/polym12040814 

  125. 125. Abraham E. Thomas M.S. John C. Pothen L.A. Shoseyov O. Thomas S. Green nanocomposites of natural rubber/nanocellulose: Membrane transport, rheological and thermal degradation characterisations Ind. Crops Prod. 2013 51 415 424 10.1016/j.indcrop.2013.09.022 

  126. 126. Kitamura Y. Okada K. Masunaga H. Hikosaka M. Role of strain rate in the strain-induced crystallization (SIC) of natural and synthetic isoprene rubber Polym. J. 2019 51 221 226 10.1038/s41428-018-0144-5 

  127. 127. Candau N. Chazeau L. Chenal J.-M. Gauthier C. Munch E. A comparison of the abilities of natural rubber (NR) and synthetic polyisoprene cis-1,4 rubber (IR) to crystallize under strain at high strain rates Phys. Chem. Chem. Phys. 2016 18 3472 3481 10.1039/C5CP06383C 26750589 

  128. 128. Xu Y. Li C. Gu J. Effects of MAH/St grafted nanocellulose on the properties of carbon reinforced styrene butadiene rubber J. Polym. Eng. 2019 39 450 458 10.1515/polyeng-2018-0228 

  129. 129. Wang J. Jia H. Zhang J. Ding L. Huang Y. Sun D. Gong X. Bacterial cellulose whisker as a reinforcing filler for carboxylated acrylonitrile-butadiene rubber J. Mater. Sci. 2014 49 6093 6101 10.1007/s10853-014-8336-7 

  130. 130. Rajisha K.R. Maria H.J. Pothan L.A. Ahmad Z. Thomas S. Preparation and characterization of potato starch nanocrystal reinforced natural rubber nanocomposites Int. J. Biol. Macromol. 2014 67 147 153 10.1016/j.ijbiomac.2014.03.013 24657376 

  131. 131. Jain M. Pradhan M.K. Morphology and mechanical properties of sisal fiber and nano cellulose green rubber composite: A comparative study Int. J. Plast. Technol. 2016 20 378 400 10.1007/s12588-016-9161-4 

  132. 132. Jiang W. Shen P. Yi J. Li L. Wu C. Gu J. Surface modification of nanocrystalline cellulose and its application in natural rubber composites J. Appl. Polym. Sci. 2020 137 49163 10.1002/app.49163 

  133. 133. Dittanet P. Somphol W. Lampang T.N. Prapainainar P. Loykulnan S. Natural rubber reinforced by nanocellulose extracted from dried rubber leaves AIP Conf. Proc. 2019 2083 030008 

  134. 134. Mekonnen T.H. Ah-Leung T. Hojabr S. Berry R. Investigation of the co-coagulation of natural rubber latex and cellulose nanocrystals aqueous dispersion Colloids Surf. A Physicochem. Eng. Asp. 2019 583 123949 10.1016/j.colsurfa.2019.123949 

  135. 135. Visakh P.M. Thomas S. Oksman K. Mathew A.P. Crosslinked natural rubber nanocomposites reinforced with cellulose whiskers isolated from bamboo waste: Processing and mechanical/thermal properties Compos. Part A Appl. Sci. Manuf. 2012 43 735 741 10.1016/j.compositesa.2011.12.015 

  136. 136. Blanchard R. Ogunsona E.O. Hojabr S. Berry R. Mekonnen T.H. Synergistic Cross-linking and Reinforcing Enhancement of Rubber Latex with Cellulose Nanocrystals for Glove Applications ACS Appl. Polym. Mater. 2020 2 887 898 10.1021/acsapm.9b01117 

  137. 137. Mariano M. El Kissi N. Dufresne A. Cellulose nanocrystal reinforced oxidized natural rubber nanocomposites Carbohydr. Polym. 2016 137 174 183 10.1016/j.carbpol.2015.10.027 26686118 

  138. 138. Roy K. Potiyaraj P. Development of high performance microcrystalline cellulose based natural rubber composites using maleated natural rubber as compatibilizer Cellulose 2018 25 1077 1087 10.1007/s10570-017-1613-2 

  139. 139. Cao L. Fu X. Xu C. Yin S. Chen Y. High-performance natural rubber nanocomposites with marine biomass (tunicate cellulose) Cellulose 2017 24 2849 2860 10.1007/s10570-017-1293-y 

  140. 140. Cao L. Yuan D. Xu C. Chen Y. Biobased, self-healable, high strength rubber with tunicate cellulose nanocrystals Nanoscale 2017 9 15696 15706 10.1039/C7NR05011A 28994438 

  141. 141. Hirase R. Nagatani A. Yuguchi Y. Development of powdering method for cellulose nanofibers assisted by zinc oxide for compounding reinforced natural rubber composite Curr. Res. Green Sustain. Chem. 2020 3 100005 10.1016/j.crgsc.2020.05.002 

  142. 142. Rosli N.A. Ahmad I. Anuar F.H. Abdullah I. Effectiveness of cellulosic Agave angustifolia fibres on the performance of compatibilised poly(lactic acid)-natural rubber blends Cellulose 2019 26 3205 3218 10.1007/s10570-019-02262-x 

  143. 143. Kumagai A. Tajima N. Iwamoto S. Morimoto T. Nagatani A. Okazaki T. Endo T. Properties of natural rubber reinforced with cellulose nanofibers based on fiber diameter distribution as estimated by differential centrifugal sedimentation Int. J. Biol. Macromol. 2019 121 989 995 10.1016/j.ijbiomac.2018.10.090 30342153 

  144. 144. Zhang C. Zhai T. Sabo R. Clemons C. Dan Y. Turng L. Reinforcing Natural Rubber with Cellulose Nanofibrils Extracted from Bleached Eucalyptus Kraft Pulp J. Biobased Mater. Bioenergy 2014 8 317 324 10.1166/jbmb.2014.1441 

  145. 145. Han J. Lu K. Yue Y. Mei C. Huang C. Wu Q. Xu X. Nanocellulose-templated assembly of polyaniline in natural rubber-based hybrid elastomers toward flexible electronic conductors Ind. Crops Prod. 2019 128 94 107 10.1016/j.indcrop.2018.11.004 

  146. 146. Li Y. Sun H. Zhang Y. Xu M. Shi S.Q. The three-dimensional heterostructure synthesis of ZnO/cellulosic fibers and its application for rubber composites Compos. Sci. Technol. 2019 177 10 17 10.1016/j.compscitech.2019.04.012 

  147. 147. Thomas M.G. Abraham E. Jyotishkumar P. Maria H.J. Pothen L.A. Thomas S. Nanocelluloses from jute fibers and their nanocomposites with natural rubber: Preparation and characterization Int. J. Biol. Macromol. 2015 81 768 777 10.1016/j.ijbiomac.2015.08.053 26318667 

  148. 148. Sharma S.K. Sharma P.R. Lin S. Chen H. Johnson K. Wang R. Borges W. Zhan C. Hsiao B.S. Reinforcement of Natural Rubber Latex Using Jute Carboxycellulose Nanofibers Extracted Using Nitro-Oxidation Method Nanomaterials 2020 10 706 10.3390/nano10040706 32276461 

  149. 149. Hosseinmardi A. Annamalai P.K. Wang L. Martin D. Amiralian N. Reinforcement of natural rubber latex using lignocellulosic nanofibers isolated from spinifex grass Nanoscale 2017 9 9510 9519 10.1039/C7NR02632C 28660962 

  150. 150. Potivara K. Phisalaphong M. Development and Characterization of Bacterial Cellulose Reinforced with Natural Rubber Materials 2019 12 2323 10.3390/ma12142323 

  151. 151. Saowapark T. Chaichana E. Jaturapiree A. Properties of natural rubber latex filled with bacterial cellulose produced from pineapple peels J. Met. Mater. Miner. 2017 27 12 16 

  152. 152. Trovatti E. Carvalho A.J.F. Ribeiro S.J.L. Gandini A. Simple Green Approach to Reinforce Natural Rubber with Bacterial Cellulose Nanofibers Biomacromolecules 2013 14 2667 2674 10.1021/bm400523h 23782026 

  153. 153. Phomrak S. Nimpaiboon A. Newby B.-M.Z. Phisalaphong M. Natural Rubber Latex Foam Reinforced with Micro- and Nanofibrillated Cellulose via Dunlop Method Polymers 2020 12 1959 10.3390/polym12091959 

  154. 154. Phomrak S. Phisalaphong M. Reinforcement of Natural Rubber with Bacterial Cellulose via a Latex Aqueous Microdispersion Process J. Nanomater. 2017 2017 4739793 10.1155/2017/4739793 

  155. 155. Phomrak S. Phisalaphong M. Lactic Acid Modified Natural Rubber–Bacterial Cellulose Composites Appl. Sci. 2020 10 3583 10.3390/app10103583 

  156. 156. Taib M.N.A.M. Yehye W.A. Julkapli N.M. Influence of Crosslinking Density on Antioxidant Nanocellulose in Bio-degradation and Mechanical Properties of Nitrile Rubber Composites Fibers Polym. 2019 20 165 176 10.1007/s12221-019-8575-y 

  157. 157. Taib M.N.A.M. Yehye W.A. Julkapli N.M. Hamid S.B.O.A.A. Influence of Hydrophobicity of Acetylated Nanocellulose on the Mechanical Performance of Nitrile Butadiene Rubber (NBR) Composites Fibers Polym. 2018 19 383 392 10.1007/s12221-018-7591-z 

  158. 158. Ogunsona E. Hojabr S. Berry R. Mekonnen T.H. Nanocellulose-triggered structural and property changes of acrylonitrile-butadiene rubber films Int. J. Biol. Macromol. 2020 164 2038 2050 10.1016/j.ijbiomac.2020.07.202 32739512 

  159. 159. Eslami H. Tzoganakis C. Mekonnen T.H. Constructing pristine and modified cellulose nanocrystals based cured polychloroprene nanocomposite films for dipped goods application Compos. Part C (JCOMC) 2020 1 100009 10.1016/j.jcomc.2020.100009 

  160. 160. Peng C. Dong B. Zhang C. Hu Y. Liu L. Zhang X. A Host–Guest Interaction Assisted Approach for Fabrication of Polybutadiene Nanocomposites Reinforced with Well-Dispersed Cellulose Nanocrystals Macromolecules 2018 51 4578 4587 10.1021/acs.macromol.8b00606 

  161. 161. Nagalakshmaiah M. El kissi N. Mortha G. Dufresne A. Structural investigation of cellulose nanocrystals extracted from chili leftover and their reinforcement in cariflex-IR rubber latex Carbohydr. Polym. 2016 136 945 954 10.1016/j.carbpol.2015.09.096 26572433 

  162. 162. Fukui S. Ito T. Saito T. Noguchi T. Isogai A. Surface-hydrophobized TEMPO-nanocellulose/rubber composite films prepared in heterogeneous and homogeneous systems Cellulose 2019 26 463 473 10.1007/s10570-018-2107-6 

  163. 163. Ketabchi M.R. Ratnam C.T. Khalid M. Walvekar R. Mechanical properties of polylactic acid/synthetic rubber blend reinforced with cellulose nanoparticles isolated from kenaf fibres Polym. Bull. 2018 75 809 827 10.1007/s00289-017-2061-8 

  164. 164. Mishra R.K. Ha S.K. Verma K. Tiwari S.K. Recent progress in selected bio-nanomaterials and their engineering applications: An overview J. Sci. Adv. Mat. Devices 2018 3 263 288 10.1016/j.jsamd.2018.05.003 

  165. 165. Nagatani A. Characteristics & Applications of Cellulose Nanofiber Reinforced Rubber Composites Int. Polym. Sci. Technol. 2017 44 1 8 

  166. 166. Visakh P.M. Thomas S. Oksman K. Mathew A.P. Cellulose nanofibres and cellulose nanowhiskers based natural rubber composites: Diffusion, sorption, and permeation of aromatic organic solvents J. Appl. Polm. Sci. 2012 124 1614 1623 10.1002/app.35176 

  167. 167. Silva M.J. Sanches A.O. Medeiros E.S. Mattoso L.H.C. McMahan C.M. Malmonge J.A. Nanocomposites of natural rubber and polyaniline-modified cellulose nanofibrils J. Therm. Anal. Calorim. 2014 117 387 392 10.1007/s10973-014-3719-1 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로