$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Unraveling the Molecular Nexus between GPCRs, ERS, and EMT 원문보기

Mediators of inflammation, v.2021, 2021년, pp.6655417 -   

Kumari, Niti (Biomedical Sciences Department, Creighton University School of Medicine, Omaha, NE 68178, USA) ,  Reabroi, Somrudee (Biomedical Sciences Department, Creighton University School of Medicine, Omaha, NE 68178, USA) ,  North, Brian J. (Biomedical Sciences Department, Creighton University School of Medicine, Omaha, NE 68178, USA)

Abstract AI-Helper 아이콘AI-Helper

G protein-coupled receptors (GPCRs) represent a large family of transmembrane proteins that transduce an external stimulus into a variety of cellular responses. They play a critical role in various pathological conditions in humans, including cancer, by regulating a number of key processes involved ...

참고문헌 (231)

  1. 1 Santos R. Ursu O. Gaulton A. A comprehensive map of molecular drug targets Nature Reviews Drug Discovery 2017 16 1 19 34 10.1038/nrd.2016.230 2-s2.0-85000936652 27910877 

  2. 2 Oakes S. A. Endoplasmic reticulum stress signaling in cancer cells American Journal of Pathology 2020 190 5 934 946 10.1016/j.ajpath.2020.01.010 32112719 

  3. 3 Gundamaraju R. Lu W. Azimi I. Eri R. Sohal S. S. Endogenous anti-cancer candidates in GPCR, ER stress, and EMT Biomedicines 2020 8 10 p. 402 10.3390/biomedicines8100402 33050301 

  4. 4 O'Hayre M. Vazquez-Prado J. Kufareva I. The emerging mutational landscape of G proteins and G-protein-coupled receptors in cancer Nature Reviews Cancer 2013 13 6 412 424 10.1038/nrc3521 2-s2.0-84878219891 23640210 

  5. 5 Zhang X. Eggert U. S. Non-traditional roles of G protein-coupled receptors in basic cell biology Molecular BioSystems 2013 9 4 586 595 10.1039/C2MB25429H 2-s2.0-84874836236 23247090 

  6. 6 Heng B. C. Aubel D. Fussenegger M. An overview of the diverse roles of G-protein coupled receptors (GPCRs) in the pathophysiology of various human diseases Biotechnology Advances 2013 31 8 1676 1694 10.1016/j.biotechadv.2013.08.017 2-s2.0-84887999195 23999358 

  7. 7 Nieto Gutierrez A. McDonald P. H. GPCRs: emerging anti-cancer drug targets Cell Signaling 2018 41 65 74 10.1016/j.cellsig.2017.09.005 2-s2.0-85030152000 28931490 

  8. 8 Pandy-Szekeres G. Munk C. Tsonkov T. M. GPCRdb in 2018: adding GPCR structure models and ligands Nucleic Acids Research 2018 46 D1 D440 D446 10.1093/nar/gkx1109 2-s2.0-85040937542 29155946 

  9. 9 Hilger D. Masureel M. Kobilka B. K. Structure and dynamics of GPCR signaling complexes Nature Structural & Molecular Biology 2018 25 1 4 12 10.1038/s41594-017-0011-7 2-s2.0-85041714864 29323277 

  10. 10 Wang W. Qiao Y. Li Z. New insights into modes of GPCR activation Trends in Pharmacological Sciences 2018 39 4 367 386 10.1016/j.tips.2018.01.001 2-s2.0-85041208470 29395118 

  11. 11 Young D. Waitches G. Birchmeier C. Fasano O. Wigler M. Isolation and characterization of a new cellular oncogene encoding a protein with multiple potential transmembrane domains Cell 1986 45 5 711 719 10.1016/0092-8674(86)90785-3 2-s2.0-0022536710 3708691 

  12. 12 Sawada Y. Kikugawa T. Iio H. GPRC5A facilitates cell proliferation through cell cycle regulation and correlates with bone metastasis in prostate cancer International Journal of Cancer 2019 146 1369 1382 10.1002/ijc.32554 2-s2.0-85069896085 31276604 

  13. 13 Placet M. Arguin G. Molle C. M. The G protein-coupled P2Y 6 receptor promotes colorectal cancer tumorigenesis by inhibiting apoptosis Biochimica et Biophysica Acta - Molecular Basis of Disease 2018 1864 5 1539 1551 10.1016/j.bbadis.2018.02.008 2-s2.0-85042642506 29454075 

  14. 14 Rao A. Herr D. R. G protein-coupled receptor GPR19 regulates E-cadherin expression and invasion of breast cancer cells Biochimica et Biophysica Acta - Molecular Cell Research 2017 1864 7 1318 1327 10.1016/j.bbamcr.2017.05.001 2-s2.0-85019021714 28476646 

  15. 15 Ward Y. Lake R. Yin J. J. LPA receptor heterodimerizes with CD97 to amplify LPA-initiated RHO-dependent signaling and invasion in prostate cancer cells Cancer Research 2011 71 23 7301 7311 10.1158/0008-5472.CAN-11-2381 2-s2.0-82655171586 21978933 

  16. 16 Ji B. Feng Y. Sun Y. GPR56 promotes proliferation of colorectal cancer cells and enhances metastasis via epithelial‑mesenchymal transition through PI3K/AKT signaling activation Oncology Reports 2018 40 4 1885 1896 10.3892/or.2018.6582 2-s2.0-85051523086 30066935 

  17. 17 Yue Z. Yuan Z. Zeng L. LGR4 modulates breast cancer initiation, metastasis, and cancer stem cells FASEB Journal 2018 32 5 2422 2437 10.1096/fj.201700897R 2-s2.0-85048631202 29269400 

  18. 18 Richard D. E. Vouret-Craviari V. Pouyssegur J. Angiogenesis and G-protein-coupled receptors: signals that bridge the gap Oncogene 2001 20 13 1556 1562 10.1038/sj.onc.1204193 2-s2.0-0035952713 11313902 

  19. 19 Huang G. Jiang H. Lin Y. LncGPR107 drives the self-renewal of liver tumor initiating cells and liver tumorigenesis through GPR107-dependent manner Journal of Experimental and Clinical Cancer Research 2018 37 1 p. 121 10.1186/s13046-018-0794-3 2-s2.0-85048756957 29925408 

  20. 20 Li Q. R. Zhao H. Zhang X. S. Lang H. Yu K. Novel-smoothened inhibitors for therapeutic targeting of naive and drug- resistant hedgehog pathway-driven cancers Acta Pharmacologica Sinica 2019 40 2 257 267 10.1038/s41401-018-0019-5 2-s2.0-85047132308 29777201 

  21. 21 Kuzumaki N. Suzuki A. Narita M. Multiple analyses of G-protein coupled receptor (GPCR) expression in the development of gefitinib-resistance in transforming non-small-cell lung cancer PLoS One 2012 7 10, article e44368 10.1371/journal.pone.0044368 2-s2.0-84868114011 23144692 

  22. 22 Wiley S. Z. Sriram K. Liang W. GPR68, a proton-sensing GPCR, mediates interaction of cancer-associated fibroblasts and cancer cells FASEB Journal 2018 32 3 1170 1183 10.1096/fj.201700834R 2-s2.0-85043522234 29092903 

  23. 23 Zhu X. Huang G. Jin P. Clinicopathological and prognostic significance of aberrant G protein-couple receptor 110 (GPR110) expression in gastric cancer Pathology - Research and Practice 2019 215 3 539 545 10.1016/j.prp.2018.12.004 2-s2.0-85059757263 

  24. 24 Sriram K. Moyung K. Corriden R. Carter H. Insel P. A. GPCRs show widespread differential mRNA expression and frequent mutation and copy number variation in solid tumors PLoS Biology 2019 17 11, article e3000434 10.1371/journal.pbio.3000434 31765370 

  25. 25 Stoy H. Gurevich V. V. How genetic errors in GPCRs affect their function: possible therapeutic strategies Genes & Diseases 2015 2 2 108 132 10.1016/j.gendis.2015.02.005 2-s2.0-84978033649 26229975 

  26. 26 Wu V. Yeerna H. Nohata N. JBC REVIEWS: Illuminating the Onco-GPCRome Journal of Biological Chemistry 2019 294 29 11062 11086 10.1074/jbc.REV119.005601 2-s2.0-85069974617 31171722 

  27. 27 Parish A. J. Nguyen V. Goodman A. M. Murugesan K. Frampton G. M. Kurzrock R. GNAS, GNAQ, and GNA11 alterations in patients with diverse cancers Cancer 2018 124 20 4080 4089 10.1002/cncr.31724 2-s2.0-85053374147 30204251 

  28. 28 Yoda A. Adelmant G. Tamburini J. Mutations in G protein β subunits promote transformation and kinase inhibitor resistance Nature Medicine 2015 21 1 71 75 10.1038/nm.3751 2-s2.0-84923075128 25485910 

  29. 29 Braakman I. Hebert D. N. Protein folding in the endoplasmic reticulum Cold Spring Harbor Perspectives in Biology 2013 5, article a013201 

  30. 30 Ibrahim I. M. Abdelmalek D. H. Elfiky A. A. GRP78: a cell's response to stress Life Sciences 2019 226 156 163 10.1016/j.lfs.2019.04.022 2-s2.0-85064314218 30978349 

  31. 31 Needham P. G. Guerriero C. J. Brodsky J. L. Chaperoning endoplasmic reticulum-associated degradation (ERAD) and protein conformational diseases Cold Spring Harbor Perspectives in Biology 2019 11 8 10.1101/cshperspect.a033928 2-s2.0-85064700177 30670468 

  32. 32 Hollien J. Weissman J. S. Decay of endoplasmic reticulum-localized mRNAs during the unfolded protein response Science 2017 313 104 107 10.1126/science.1129631 2-s2.0-33745893809 

  33. 33 Urano F. Wang X. Bertolotti A. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1 Science 2000 287 5453 664 666 10.1126/science.287.5453.664 2-s2.0-0034723235 10650002 

  34. 34 B'Chir W. Maurin A. C. Carraro V. The eIF2 α /ATF4 pathway is essential for stress-induced autophagy gene expression Nucleic Acids Research 2013 41 16 7683 7699 10.1093/nar/gkt563 2-s2.0-84885455062 23804767 

  35. 35 Novoa I. Zeng H. Harding H. P. Ron D. Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2alpha Journal Cell Biology 2001 153 5 1011 1022 10.1083/jcb.153.5.1011 2-s2.0-0035947778 11381086 

  36. 36 Lin Y. Jiang M. Chen W. Zhao T. Wei Y. Cancer and ER stress: mutual crosstalk between autophagy, oxidative stress and inflammatory response Biomed Pharmacother 2019 118, article 109249 10.1016/j.biopha.2019.109249 2-s2.0-85069690557 

  37. 37 Kania E. Pajak B. Orzechowski A. Calcium homeostasis and ER stress in control of autophagy in cancer cells BioMed Research International 2015 2015 12 352794 10.1155/2015/352794 2-s2.0-84925324913 25821797 

  38. 38 Senft D. Ronai Z. A. UPR, autophagy, and mitochondria crosstalk underlies the ER stress response Trends in Biochemical Sciences 2015 40 3 141 148 10.1016/j.tibs.2015.01.002 2-s2.0-84923195554 25656104 

  39. 39 Koritzinsky M. Levitin F. van den Beucken T. Two phases of disulfide bond formation have differing requirements for oxygen Journal Cell Biology 2013 203 4 615 627 10.1083/jcb.201307185 2-s2.0-84890233980 24247433 

  40. 40 Poplawski T. Pytel D. Dziadek J. Majsterek I. Interplay between redox signaling, oxidative stress, and unfolded protein response (UPR) in pathogenesis of human diseases Oxidative Medicine and Cellular Longevity 2019 2019 2 6949347 10.1155/2019/6949347 2-s2.0-85066879119 31089415 

  41. 41 Gillies R. J. Liu Z. Bhujwalla Z. 31P-MRS measurements of extracellular pH of tumors using 3-aminopropylphosphonate American Journal of Physiology-Cell Physiology 1994 267 1 C195 C203 10.1152/ajpcell.1994.267.1.C195 

  42. 42 Zhang T. Li N. Sun C. Jin Y. Sheng X. MYC and the unfolded protein response in cancer: synthetic lethal partners in crime? EMBO Molecular Medicine 2020 12 5, article e11845 10.15252/emmm.201911845 32310340 

  43. 43 Ma X. H. Piao S. F. Dey S. Targeting ER stress-induced autophagy overcomes BRAF inhibitor resistance in melanoma Journal of Clinical Investigation 2014 124 3 1406 1417 10.1172/JCI70454 2-s2.0-84896757312 24569374 

  44. 44 Corazzari M. Rapino F. Ciccosanti F. Oncogenic BRAF induces chronic ER stress condition resulting in increased basal autophagy and apoptotic resistance of cutaneous melanoma Cell Death and Differentiation 2015 22 6 946 958 10.1038/cdd.2014.183 2-s2.0-84939977223 25361077 

  45. 45 Sicari D. Fantuz M. Bellazzo A. Mutant p53 improves cancer cells' resistance to endoplasmic reticulum stress by sustaining activation of the UPR regulator ATF6 Oncogene 2019 38 34 6184 6195 10.1038/s41388-019-0878-3 2-s2.0-85069432765 31312025 

  46. 46 Blazanin N. Son J. Craig-Lucas A. B. ER stress and distinct outputs of the IRE1 α RNase control proliferation and senescence in response to oncogenic Ras Proceedings of the National Academy of Sciences of the United States of America 2017 114 37 9900 9905 10.1073/pnas.1701757114 2-s2.0-85029546468 28847931 

  47. 47 Taniguchi K. Karin M. NF- κ B, inflammation, immunity and cancer: coming of age Nature Reviews Immunology 2018 18 5 309 324 10.1038/nri.2017.142 2-s2.0-85044512447 29379212 

  48. 48 Tam A. B. Mercado E. L. Hoffmann A. Niwa M. ER stress activates NF- κ B by integrating functions of basal IKK activity, IRE1 and PERK PLoS One 2012 7 10, article e45078 10.1371/journal.pone.0045078 2-s2.0-84868130018 23110043 

  49. 49 Darling N. J. Cook S. J. The role of MAPK signalling pathways in the response to endoplasmic reticulum stress Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 2014 1843 10 2150 2163 10.1016/j.bbamcr.2014.01.009 2-s2.0-84904982625 24440275 

  50. 50 Luo S. Lee A. S. Requirement of the p38 mitogen-activated protein kinase signalling pathway for the induction of the 78 kDa glucose-regulated protein/immunoglobulin heavy-chain binding protein by azetidine stress: activating transcription factor 6 as a target for stress-induced phosphorylation Biochemical Journal 2002 366 Part 3 787 795 10.1042/BJ20011802 2-s2.0-0037106329 12076252 

  51. 51 Yang F. Tang X. Y. Liu H. Jiang Z. W. Inhibition of mitogen-activated protein kinase signaling pathway sensitizes breast cancer cells to endoplasmic reticulum stress-induced apoptosis Oncology Reports 2016 35 4 2113 2120 10.3892/or.2016.4580 2-s2.0-84958582036 26796921 

  52. 52 Winnay J. N. Solheim M. H. Sakaguchi M. Njolstad P. R. Kahn C. R. Inhibition of the PI 3-kinase pathway disrupts the unfolded protein response and reduces sensitivity to ER stress-dependent apoptosis FASEB Journal 2020 34 9 12521 12532 10.1096/fj.202000892R 32744782 

  53. 53 Hsu H. S. Liu C. C. Lin J. H. Involvement of ER stress, PI3K/AKT activation, and lung fibroblast proliferation in bleomycin-induced pulmonary fibrosis Scientific Reports 2017 7 1, article 14272 10.1038/s41598-017-14612-5 2-s2.0-85040363085 29079731 

  54. 54 Mounir Z. Krishnamoorthy J. L. Wang S. Akt determines cell fate through inhibition of the PERK-eIF2 Phosphorylation Pathway Science Signaling 2011 4 192, article ra62 10.1126/scisignal.2001630 2-s2.0-80053285628 21954288 

  55. 55 Dai R. Chen R. Li H. Cross-talk between PI3K/Akt and MEK/ERK pathways mediates endoplasmic reticulum stress-induced cell cycle progression and cell death in human hepatocellular carcinoma cells International Journal of Oncology 2009 34 6 1749 1757 10.3892/ijo_00000306 2-s2.0-67649438633 19424594 

  56. 56 Blaustein M. Perez-Munizaga D. Sanchez M. A. Modulation of the Akt pathway reveals a novel link with PERK/eIF2 α , which is relevant during hypoxia PLoS One 2013 8 7, article e69668 10.1371/journal.pone.0069668 2-s2.0-84880790425 23922774 

  57. 57 Qin L. Wang Z. Tao L. Wang Y. ER stress negatively regulates AKT/TSC/mTOR pathway to enhance autophagy Autophagy 2014 6 2 239 247 10.4161/auto.6.2.11062 2-s2.0-77953506788 

  58. 58 Zhang Y. Tseng C. C. Tsai Y. L. Fu X. Schiff R. Lee A. S. Cancer cells resistant to therapy promote cell surface relocalization of GRP78 which complexes with PI3K and enhances PI(3,4,5)P3 production PLoS One 2013 8 11, article e80071 10.1371/journal.pone.0080071 2-s2.0-84893205768 24244613 

  59. 59 Han Z. Kang D. Joo Y. TGF- β downregulation-induced cancer cell death is finely regulated by the SAPK signaling cascade Experimental & Molecular Medicine 2018 50 12 1 19 10.1038/s12276-018-0189-8 2-s2.0-85058597212 30523245 

  60. 60 Johno H. Kitamura M. Pathological _in Situ_ Reprogramming of Somatic Cells by the Unfolded Protein Response American Journal of Pathology 2013 183 3 644 654 10.1016/j.ajpath.2013.05.008 2-s2.0-84883168653 23831328 

  61. 61 Li C. Grider J. R. Murthy K. S. Endoplasmic reticulum stress in subepithelial myofibroblasts increases the TGF- β 1 activity that regulates fibrosis in Crohn's disease Inflammatory Bowel Diseases 2020 26 6 809 819 10.1093/ibd/izaa015 32031621 

  62. 62 Lei Z. Yang L. Yang Y. Activation of Wnt/ β -catenin pathway causes insulin resistance and increases lipogenesis in HepG2 cells via regulation of endoplasmic reticulum stress Biochemical and Biophysical Research Communications 2020 526 3 764 771 10.1016/j.bbrc.2020.03.147 32265032 

  63. 63 Raab M. S. Breitkreutz I. Tonon G. Targeting PKC: a novel role for beta-catenin in ER stress and apoptotic signaling Blood 2009 113 7 1513 1521 10.1182/blood-2008-05-157040 2-s2.0-61849179573 19018094 

  64. 64 Marada S. Stewart D. P. Bodeen W. J. Han Y. G. Ogden S. K. The unfolded protein response selectively targets active smoothened mutants Molecular and Cellular Biology 2013 33 12 2375 2387 10.1128/MCB.01445-12 2-s2.0-84878997806 23572559 

  65. 65 Krook M. A. Nicholls L. A. Scannell C. A. Chugh R. Thomas D. G. Lawlor E. R. Stress-induced CXCR4 promotes migration and invasion of Ewing sarcoma Molecular Cancer Research 2014 12 6 953 964 10.1158/1541-7786.MCR-13-0668 2-s2.0-84902654940 24651452 

  66. 66 Zhang J. Liu C. Mo X. Shi H. Li S. Mechanisms by which CXCR4/CXCL12 cause metastatic behavior in pancreatic cancer Oncology Letters 2018 15 2 1771 1776 10.3892/ol.2017.7512 2-s2.0-85038431835 29434873 

  67. 67 Li Y. M. Pan Y. Wei Y. Upregulation of CXCR4 is essential for HER2-mediated tumor metastasis Cancer Cell 2004 6 5 459 469 10.1016/j.ccr.2004.09.027 2-s2.0-7944223780 15542430 

  68. 68 Jiang C. Ma S. Hu R. Effect of CXCR4 on apoptosis in osteosarcoma cells via the PI3K/Akt/NF- κβ signaling pathway Cellular Physiology and Biochemistry 2018 46 6 2250 2260 10.1159/000489593 2-s2.0-85047735798 29734183 

  69. 69 Xu Y. Targeting lysophosphatidic acid in cancer: the issues in moving from bench to bedside Cancers 2019 11 10 p. 1523 10.3390/cancers11101523 2-s2.0-85073728157 31658655 

  70. 70 Li Z. Wei H. Liu X. Hu S. Cong X. Chen X. LPA rescues ER stress-associated apoptosis in hypoxia and serum deprivation-stimulated mesenchymal stem cells Journal of Biological Chemistry 2010 111 4 811 820 10.1002/jcb.22731 2-s2.0-77956330635 20533299 

  71. 71 Mijan M. A. Kim J. Y. Moon S. Y. Choi S. H. Nah S. Y. Yang H. J. Gintonin enhances proliferation, late stage differentiation, and cell survival from endoplasmic reticulum stress of oligodendrocyte lineage cells Frontiers in Pharmacology 2019 10 p. 1211 10.3389/fphar.2019.01211 2-s2.0-85073014084 

  72. 72 Kalouche G. Boucher C. Coste A. Prostaglandin EP2 receptor signaling protects human trabecular meshwork cells from apoptosis induced by ER stress through down-regulation of p53 Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 2016 1863 9 2322 2332 10.1016/j.bbamcr.2016.06.008 2-s2.0-84976527538 27321910 

  73. 73 Chang S. H. Liu C. H. Conway R. Role of prostaglandin E2-dependent angiogenic switch in cyclooxygenase 2-induced breast cancer progression Proceedings of the National Academy of Sciences of the United States of America 2004 101 2 591 596 10.1073/pnas.2535911100 2-s2.0-0347717578 14688410 

  74. 74 Dietlmeier S. Ye Y. Kuhn C. The prostaglandin receptor EP2 determines prognosis in EP3-negative and galectin-3-high cervical cancer cases Scientific Reports 2020 10 1 p. 1154 10.1038/s41598-020-58095-3 31980713 

  75. 75 Kashiwagi E. Inoue S. Mizushima T. Prostaglandin receptors induce urothelial tumourigenesis as well as bladder cancer progression and cisplatin resistance presumably via modulating PTEN expression British Journal of Cancer 2018 118 2 213 223 10.1038/bjc.2017.393 2-s2.0-85041064796 29123257 

  76. 76 Zhang Q. Yu S. Lam M. M. T. Angiotensin II promotes ovarian cancer spheroid formation and metastasis by upregulation of lipid desaturation and suppression of endoplasmic reticulum stress Journal of Experimental and Clinical Cancer Research 2019 38 1 p. 116 10.1186/s13046-019-1127-x 2-s2.0-85062629736 30845964 

  77. 77 Chen J. Xie J. J. Shi K. S. Glucagon-like peptide-1 receptor regulates endoplasmic reticulum stress- induced apoptosis and the associated inflammatory response in chondrocytes and the progression of osteoarthritis in rat Cell Death and Disease 2018 9 2 p. 212 10.1038/s41419-017-0217-y 2-s2.0-85041966457 29434185 

  78. 78 Yusta B. Baggio L. L. Estall J. L. GLP-1 receptor activation improves β cell function and survival following induction of endoplasmic reticulum stress Cell Metabolism 2006 4 5 391 406 10.1016/j.cmet.2006.10.001 2-s2.0-33750448469 17084712 

  79. 79 Cunha D. A. Ladriere L. Ortis F. Glucagon-like peptide-1 agonists protect pancreatic beta-cells from lipotoxic endoplasmic reticulum stress through upregulation of BiP and JunB Diabetes 2009 58 12 2851 2862 10.2337/db09-0685 2-s2.0-73249116246 19720788 

  80. 80 Xia Z. Wu S. Wei X. β -Catenin hinders hypoxic UPR-mediated adaptive response Journal of Biological Chemistry 2019 294 37 13811 13821 10.1074/jbc.RA119.008353 2-s2.0-85072128136 31350332 

  81. 81 Huang Y. L. Chang C. L. Tang C. H. Extrinsic sphingosine 1-phosphate activates S1P 5 and induces autophagy through generating endoplasmic reticulum stress in human prostate cancer PC-3 cells Cell Signaling 2014 26 3 611 618 10.1016/j.cellsig.2013.11.024 2-s2.0-84891464403 24333325 

  82. 82 Tan M. Yamaguchi S. Nakamura M. Nagamune T. Real-time monitoring of pH-dependent intracellular trafficking of ovarian cancer G protein-coupled receptor 1 in living leukocytes Journal of Bioscience and Bioengineering 2018 126 3 363 370 10.1016/j.jbiosc.2018.03.012 2-s2.0-85045190704 29655915 

  83. 83 Maeyashiki C. Melhem H. Hering L. Activation of pH-Sensing Receptor OGR1 (GPR68) Induces ER Stress Via the IRE1 α /JNK Pathway in an Intestinal Epithelial Cell Model Scientific Reports 2020 10 1 p. 1438 10.1038/s41598-020-57657-9 31996710 

  84. 84 Ferreira L. C. Orso F. Dettori D. The role of melatonin on miRNAs modulation in triple-negative breast cancer cells PLoS One 2020 15 2, article e0228062 10.1371/journal.pone.0228062 32012171 

  85. 85 Jablonska K. Nowinska K. Piotrowska A. Prognostic impact of melatonin receptors MT1 and MT2 in non-small cell lung cancer (NSCLC) Cancers (Basel) 2019 11 7 p. 1001 10.3390/cancers11071001 2-s2.0-85071163917 31319607 

  86. 86 Hu W. Ma Z. Di S. Snapshot: implications for melatonin in endoplasmic reticulum homeostasis British Journal of Pharmacology 2016 173 24 3431 3442 10.1111/bph.13651 2-s2.0-84996483039 27759160 

  87. 87 Moreira A. J. Ordonez R. Cerski C. T. Melatonin activates endoplasmic reticulum stress and apoptosis in rats with diethylnitrosamine-induced hepatocarcinogenesis PLoS One 2015 10 12, article e0144517 10.1371/journal.pone.0144517 2-s2.0-84957109743 26656265 

  88. 88 Zha L. Fan L. Sun G. Melatonin sensitizes human hepatoma cells to endoplasmic reticulum stress-induced apoptosis Journal of Pineal Research 2012 52 3 322 331 10.1111/j.1600-079X.2011.00946.x 2-s2.0-84862830150 22225575 

  89. 89 Carbajo-Pescador S. Garcia-Palomo A. Martin-Renedo J. Piva M. Gonzalez-Gallego J. Mauriz J. L. Melatonin modulation of intracellular signaling pathways in hepatocarcinoma HepG2 cell line: role of the MT1 receptor Journal of Pineal Research 2011 51 4 463 471 10.1111/j.1600-079X.2011.00910.x 2-s2.0-80054818699 21718361 

  90. 90 Lopes J. R. Maschio L. B. Jardim-Perassi B. V. Evaluation of melatonin treatment in primary culture of canine mammary tumors Oncology Reports 2015 33 1 311 319 10.3892/or.2014.3596 2-s2.0-84916200401 25384569 

  91. 91 Elbaz M. Ahirwar D. Ravi J. Nasser M. W. Ganju R. K. Novel role of cannabinoid receptor 2 in inhibiting EGF/EGFR and IGF-I/IGF-IR pathways in breast cancer Oncotarget 2017 8 18 29668 29678 10.18632/oncotarget.9408 2-s2.0-85018967943 27213582 

  92. 92 Greenhough A. Patsos H. A. Williams A. C. Paraskeva C. The cannabinoid delta(9)-tetrahydrocannabinol inhibits RAS-MAPK and PI3K-AKT survival signalling and induces BAD-mediated apoptosis in colorectal cancer cells International Journal of Cancer 2007 121 10 2172 2180 10.1002/ijc.22917 2-s2.0-35348910284 17583570 

  93. 93 Wang D. Wang H. Ning W. Backlund M. G. Dey S. K. DuBois R. N. Loss of cannabinoid receptor 1 accelerates intestinal tumor growth Cancer Research 2008 68 15 6468 6476 10.1158/0008-5472.CAN-08-0896 2-s2.0-51049102995 18676872 

  94. 94 Zeng C. Chen Y. HTR1D, TIMP1, SERPINE1, MMP3 and CNR2 affect the survival of patients with colon adenocarcinoma Oncology Letters 2019 18 3 2448 2454 10.3892/ol.2019.10545 2-s2.0-85070757928 31452735 

  95. 95 Shrivastava A. Kuzontkoski P. M. Groopman J. E. Prasad A. Cannabidiol induces programmed cell death in breast cancer cells by coordinating the cross-talk between apoptosis and autophagy Molecular Cancer Therapeutics 2011 10 7 1161 1172 10.1158/1535-7163.MCT-10-1100 2-s2.0-79960115996 21566064 

  96. 96 Vo D. H. Hartig R. Weinert S. Haybaeck J. Nass N. G-protein-coupled estrogen receptor (GPER)-specific agonist G1 induces ER stress leading to cell death in MCF-7 cells Biomolecules 2019 9 9 p. 503 10.3390/biom9090503 2-s2.0-85072536063 31540491 

  97. 97 Lee S. J. Kim T. W. Park G. L. G protein-coupled estrogen receptor-1 agonist induces chemotherapeutic effect via ER stress signaling in gastric cancer BMB Reports 2019 52 11 647 652 10.5483/BMBRep.2019.52.11.007 31234952 

  98. 98 Liu A. X. Zhang D. Zhu Y. M. Impact of axis of GHRH and GHRH receptor on cell viability and apoptosis of the placental choriocarcinoma cell line Current Molecular Medicine 2016 16 3 299 311 10.2174/1566524016666160225154040 2-s2.0-84961741415 26917260 

  99. 99 Roberts H. R. Smartt H. J. Greenhough A. Moore A. E. Williams A. C. Paraskeva C. Colon tumour cells increase PGE2 by regulating COX-2 and 15-PGDH to promote survival during the microenvironmental stress of glucose deprivation Carcinogenesis 2011 32 11 1741 1747 10.1093/carcin/bgr210 2-s2.0-80755168365 21926111 

  100. 100 Jiang X. Su L. Zhang Q. GABAB receptor complex as a potential target for tumor therapy Journal of Histochemistry & Cytochemistry 2012 60 4 269 279 10.1369/0022155412438105 2-s2.0-84864813544 22266766 

  101. 101 Maier P. J. Zemoura K. Acuna M. A. Yevenes G. E. Zeilhofer H. U. Benke D. Ischemia-like Oxygen and Glucose Deprivation Mediates Down-regulation of Cell Surface γ -Aminobutyric Acid B Receptors via the Endoplasmic Reticulum (ER) Stress-induced Transcription Factor CCAAT/Enhancer- binding Protein (C/EBP)-homologous Protein (CHOP) Journal of Biological Chemistry 2014 289 18 12896 12907 10.1074/jbc.M114.550517 2-s2.0-84899753156 24668805 

  102. 102 Baum B. Settleman J. Quinlan M. P. Transitions between epithelial and mesenchymal states in development and disease Seminars in Cell and Developmental Biology 2008 19 3 294 308 10.1016/j.semcdb.2008.02.001 2-s2.0-41549162752 18343170 

  103. 103 Thiery J. P. Acloque H. Huang R. Y. Nieto M. A. Epithelial-mesenchymal transitions in development and disease Cell 2009 139 5 871 890 10.1016/j.cell.2009.11.007 2-s2.0-70450198396 19945376 

  104. 104 Kalluri R. Weinberg R. A. The basics of epithelial-mesenchymal transition Journal of Clinical Investigation 2009 119 6 1420 1428 10.1172/JCI39104 2-s2.0-67650999875 19487818 

  105. 105 Dongre A. Weinberg R. A. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer Nature Reviews Molecular Cell Biology 2019 20 2 69 84 10.1038/s41580-018-0080-4 2-s2.0-85056862989 30459476 

  106. 106 Nieto M. A. Huang R. Y. Jackson R. A. Thiery J. P. EMT: 2016 Cell 2016 166 1 21 45 10.1016/j.cell.2016.06.028 2-s2.0-84976539958 27368099 

  107. 107 Ocana O. H. Corcoles R. Fabra A. Metastatic colonization requires the repression of the epithelial-mesenchymal transition inducer Prrx1 Cancer Cell 2012 22 6 709 724 10.1016/j.ccr.2012.10.012 2-s2.0-84870816403 23201163 

  108. 108 Jechlinger M. Grunert S. Tamir I. H. Expression profiling of epithelial plasticity in tumor progression Oncogene 2003 22 46 7155 7169 10.1038/sj.onc.1206887 2-s2.0-0242720727 14562044 

  109. 109 Gonzalez D. M. Medici D. Signaling mechanisms of the epithelial-mesenchymal transition Science Signaling 2014 7 344 p. re8 10.1126/scisignal.2005189 2-s2.0-84907501988 25249658 

  110. 110 Xu Q. Deng F. Qin Y. Long non-coding RNA regulation of epithelial-mesenchymal transition in cancer metastasis Cell Death and Disease 2016 7 6, article e2254 10.1038/cddis.2016.149 2-s2.0-85011095959 27277676 

  111. 111 Zhang J. Ma L. MicroRNA control of epithelial-mesenchymal transition and metastasis Cancer and Metastasis Reviews 2012 31 3-4 653 662 10.1007/s10555-012-9368-6 2-s2.0-84868000009 22684369 

  112. 112 Serrano-Gomez S. J. Maziveyi M. Alahari S. K. Regulation of epithelial-mesenchymal transition through epigenetic and post-translational modifications Molecular Cancer 2016 15 1 p. 18 10.1186/s12943-016-0502-x 2-s2.0-84959235401 

  113. 113 Bar-Shavit R. Maoz M. Kancharla A. G protein-coupled receptors in cancer International Journal of Molecular Sciences 2016 17 8 p. 1320 10.3390/ijms17081320 2-s2.0-84982218473 27529230 

  114. 114 Lappano R. Maggiolini M. G protein-coupled receptors: novel targets for drug discovery in cancer Nature Reviews Drug Discovery 2011 10 1 47 60 10.1038/nrd3320 2-s2.0-78650845707 21193867 

  115. 115 Almendro V. Garcia-Recio S. Gascon P. Tyrosine kinase receptor transactivation associated to G protein-coupled receptors Current Drug Targets 2010 11 9 1169 1180 10.2174/138945010792006807 2-s2.0-78651279608 20450475 

  116. 116 Lappano R. Maggiolini M. GPCRs and cancer Acta Pharmacologica Sinica 2012 33 3 351 362 10.1038/aps.2011.183 2-s2.0-84858122979 22266725 

  117. 117 Bhola N. E. Grandis J. R. Crosstalk between G-protein-coupled receptors and epidermal growth factor receptor in cancer Frontiers in Bioscience 2008 13 13 1857 1865 10.2741/2805 2-s2.0-38449087529 17981673 

  118. 118 Kose M. GPCRs and EGFR - cross-talk of membrane receptors in cancer Bioorganic & Medicinal Chemistry Letters 2017 27 16 3611 3620 10.1016/j.bmcl.2017.07.002 2-s2.0-85021900837 28705643 

  119. 119 Schafer A. E. Blaxall B. C. G protein coupled receptor-mediated transactivation of extracellular proteases Journal of Cardiovascular Pharmacology 2017 70 1 10 15 10.1097/FJC.0000000000000475 2-s2.0-85012871148 28195946 

  120. 120 Cheng Y. Che X. Zhang S. Positive cross-talk between CXC chemokine receptor 4 (CXCR4) and epidermal growth factor receptor (EGFR) promotes gastric cancer metastasis via the nuclear factor kappa B (NF-kB)-dependent pathway Medical Science Monitor 2020 26, article e925019 10.12659/msm.925019 

  121. 121 Yuan B. Cui J. Wang W. Deng K. G α 12/13 signaling promotes cervical cancer invasion through the RhoA/ROCK-JNK signaling axis Biochemical and Biophysical Research Communications 2016 473 4 1240 1246 10.1016/j.bbrc.2016.04.048 2-s2.0-84963984651 27084452 

  122. 122 Kelly P. Moeller B. J. Juneja J. The G12 family of heterotrimeric G proteins promotes breast cancer invasion and metastasis Proceedings of the National Academy of Sciences of the United States of America 2006 103 21 8173 8178 10.1073/pnas.0510254103 2-s2.0-33744459471 16705036 

  123. 123 Smrcka A. V. Molecular targeting of G α and G βγ subunits: a potential approach for cancer therapeutics Trends in Pharmacological Sciences 2013 34 5 290 298 10.1016/j.tips.2013.02.006 2-s2.0-84876898526 23557963 

  124. 124 Kirui J. K. Xie Y. Wolff D. W. Jiang H. Abel P. W. Tu Y. Gbetagamma signaling promotes breast cancer cell migration and invasion Journal of Pharmacology and Experimental Therapeutics 2010 333 2 393 403 10.1124/jpet.109.164814 2-s2.0-77951038932 20110378 

  125. 125 Khalil B. D. Hsueh C. Cao Y. GPCR signaling mediates tumor metastasis via PI3K β Cancer Research 2016 76 10 2944 2953 10.1158/0008-5472.CAN-15-1675 2-s2.0-84971516907 27013201 

  126. 126 Dbouk H. A. Vadas O. Shymanets A. G protein-coupled receptor-mediated activation of p110beta by Gbetagamma is required for cellular transformation and invasiveness Science Signaling 2012 5, article ra89 

  127. 127 Bagnato A. Rosano L. New routes in GPCR/ β -Arrestin-Driven signaling in cancer progression and metastasis Frontiers in Pharmacology 2019 10 p. 114 10.3389/fphar.2019.00114 2-s2.0-85065850272 

  128. 128 Song Q. Ji Q. Li Q. The role and mechanism of β ‑arrestins in cancer invasion and metastasis (review) International Journal of Molecular Medicine 2018 41 2 631 639 10.3892/ijmm.2017.3288 2-s2.0-85040449114 29207104 

  129. 129 Rosano L. Bagnato A. β -arrestin1 at the cross-road of endothelin-1 signaling in cancer Journal of Experimental and Clinical Cancer Research 2016 35 1 p. 121 10.1186/s13046-016-0401-4 2-s2.0-84979699167 27473335 

  130. 130 Nieto M. A. Epithelial plasticity: a common theme in embryonic and cancer cells Science 2013 342 6159, article 1234850 10.1126/science.1234850 2-s2.0-84887273608 24202173 

  131. 131 Mani S. A. Guo W. Liao M. J. The epithelial-mesenchymal transition generates cells with properties of stem cells Cell 2008 133 4 704 715 10.1016/j.cell.2008.03.027 2-s2.0-43049165453 18485877 

  132. 132 Heerboth S. Housman G. Leary M. EMT and tumor metastasis Clinical and Translational Medicine 2015 4 p. 6 

  133. 133 Batlle E. Sancho E. Franci C. The transcription factor Snail is a repressor of E-cadherin gene expression in epithelial tumour cells Nature Cell Biology 2000 2 2 84 89 10.1038/35000034 2-s2.0-0033789680 10655587 

  134. 134 Urra H. Dufey E. Avril T. Chevet E. Hetz C. Endoplasmic reticulum stress and the hallmarks of cancer Trends Cancer 2016 2 5 252 262 10.1016/j.trecan.2016.03.007 2-s2.0-84968918504 28741511 

  135. 135 Li H. Chen X. Gao Y. Wu J. Zeng F. Song F. XBP1 induces snail expression to promote epithelial- to-mesenchymal transition and invasion of breast cancer cells Cell Signaling 2015 27 1 82 89 10.1016/j.cellsig.2014.09.018 2-s2.0-84908570844 25280941 

  136. 136 Lhomond S. Avril T. Dejeans N. Dual IRE1 RNase functions dictate glioblastoma development EMBO Molecular Medicine 2018 10 3 10.15252/emmm.201707929 2-s2.0-85043258450 29311133 

  137. 137 Chipurupalli S. Kannan E. Tergaonkar V. D'Andrea R. Robinson N. Hypoxia induced ER stress response as an adaptive mechanism in cancer International Journal of Molecular Sciences 2019 20 3 p. 749 10.3390/ijms20030749 2-s2.0-85061484067 30754624 

  138. 138 Koumenis C. Wouters B. G. "Translating" tumor hypoxia: unfolded protein response (UPR)-dependent and UPR-independent pathways Molecular Cancer Research 2006 4 7 423 436 10.1158/1541-7786.MCR-06-0150 2-s2.0-33746886623 16849518 

  139. 139 Shen X. Xue Y. Si Y. The unfolded protein response potentiates epithelial-to-mesenchymal transition (EMT) of gastric cancer cells under severe hypoxic conditions Medical Oncology 2015 32 1 p. 447 10.1007/s12032-014-0447-0 2-s2.0-84920122203 25502090 

  140. 140 Mujcic H. Rzymski T. Rouschop K. M. Hypoxic activation of the unfolded protein response (UPR) induces expression of the metastasis-associated gene LAMP3 Radiotherapy & Oncology 2009 92 3 450 459 10.1016/j.radonc.2009.08.017 2-s2.0-69949115589 19726095 

  141. 141 Nagelkerke A. Bussink J. Mujcic H. Hypoxia stimulates migration of breast cancer cells via the PERK/ATF4/LAMP3-arm of the unfolded protein response Breast Cancer Research 2013 15 1 p. R2 10.1186/bcr3373 2-s2.0-84871882783 23294542 

  142. 142 Nagelkerke A. Sweep F. C. Stegeman H. Hypoxic regulation of the PERK/ATF4/LAMP3-arm of the unfolded protein response in head and neck squamous cell carcinoma Head Neck 2015 37 6 896 905 10.1002/hed.23693 2-s2.0-84929948619 24634103 

  143. 143 Lu J. Ma H. Lian S. Clinical significance and prognostic value of the expression of LAMP3 in oral squamous cell carcinoma Disease Markers 2017 2017 8 1218254 10.1155/2017/1218254 2-s2.0-85020026303 28607528 

  144. 144 Gui Y. Liu W. B. Chen H. Ma J. L. Li J. S. Expression of LAMP3 and its correlation with clinicopathologic characteristics and prognosis in hepatocellular carcinoma International Journal of Clinical 2018 11 1 367 374 31938120 

  145. 145 Burton T. D. Fedele A. O. Xie J. Sandeman L. Y. Proud C. G. The gene for the lysosomal protein LAMP3 is a direct target of the transcription factor ATF4 Journal of Biological Chemistry 2020 295 21 7418 7430 10.1074/jbc.RA119.011864 32312748 

  146. 146 Shin H. S. Ryu E. S. Oh E. S. Kang D. H. Endoplasmic reticulum stress as a novel target to ameliorate epithelial-to- mesenchymal transition and apoptosis of human peritoneal mesothelial cells Laboratory Investigation 2015 95 10 1157 1173 10.1038/labinvest.2015.91 2-s2.0-84942783588 26192086 

  147. 147 Gong L. Liu G. Zhu H. IL-32 induces epithelial-mesenchymal transition by triggering endoplasmic reticulum stress in A549 cells BMC Pulmonary Medicine 2020 20 1 p. 278 10.1186/s12890-020-01319-z 33097029 

  148. 148 Liu D. Zhu H. Gong L. Histone deacetylases promote ER stress induced epithelial mesenchymal transition in human lung epithelial cells Cellular Physiology and Biochemistry 2018 46 5 1821 1834 10.1159/000489367 2-s2.0-85047610294 29705800 

  149. 149 Zhong Q. Zhou B. Ann D. K. Role of endoplasmic reticulum stress in epithelial-mesenchymal transition of alveolar epithelial cells: effects of misfolded surfactant protein American Journal of Respiratory Cell and Molecular Biology 2011 45 3 498 509 10.1165/rcmb.2010-0347OC 2-s2.0-80052540057 21169555 

  150. 150 Tanjore H. Cheng D. S. Degryse A. L. Alveolar epithelial cells undergo epithelial-to-mesenchymal transition in response to endoplasmic reticulum stress. Journal of Biological Chemistry 2015 290 6 p. 3277 10.1074/jbc.A110.181164 2-s2.0-84922361289 25661316 

  151. 151 Winer A. Adams S. Mignatti P. Matrix metalloproteinase inhibitors in cancer therapy: turning past failures into future successes Molecular Cancer Therapeutics 2018 17 6 1147 1155 10.1158/1535-7163.MCT-17-0646 2-s2.0-85048065219 29735645 

  152. 152 Zhu H. Chen X. Chen B. Activating transcription factor 4 promotes esophageal squamous cell carcinoma invasion and metastasis in mice and is associated with poor prognosis in human patients PLoS One 2014 9 7, article e103882 10.1371/journal.pone.0103882 2-s2.0-84905241767 25078779 

  153. 153 Dejeans N. Pluquet O. Lhomond S. Autocrine control of glioma cells adhesion and migration through IRE1 -mediated cleavage of SPARC mRNA Journal of Cell Science 2012 125 18 4278 4287 10.1242/jcs.099291 2-s2.0-84872173393 22718352 

  154. 154 Jabouille A. Delugin M. Pineau R. Glioblastoma invasion and cooption depend on IRE1 α endoribonuclease activity Oncotarget 2015 6 28 24922 24934 10.18632/oncotarget.4679 2-s2.0-84944474756 26325176 

  155. 155 Cuevas E. P. Eraso P. Mazon M. J. LOXL2 drives epithelial-mesenchymal transition via activation of IRE1-XBP1 signalling pathway Scientific Reports 2017 7 1, article 44988 10.1038/srep44988 2-s2.0-85016163869 

  156. 156 Castillo K. Rojas-Rivera D. Lisbona F. BAX inhibitor-1 regulates autophagy by controlling the IRE1 α branch of the unfolded protein response EMBO Journal 2011 30 21 4465 4478 10.1038/emboj.2011.318 2-s2.0-80455173839 21926971 

  157. 157 Nguyen D. T. Kebache S. Fazel A. Nck-dependent activation of extracellular signal-regulated kinase-1 and regulation of cell survival during endoplasmic reticulum stress Molecular Biology of the Cell 2004 15 9 4248 4260 10.1091/mbc.e03-11-0851 2-s2.0-4344598305 15201339 

  158. 158 Urra H. Henriquez D. R. Canovas J. IRE1 α governs cytoskeleton remodelling and cell migration through a direct interaction with filamin A Nature Cell Biology 2018 20 8 942 953 10.1038/s41556-018-0141-0 2-s2.0-85049932575 30013108 

  159. 159 van Vliet A. R. Giordano F. Gerlo S. The ER stress sensor PERK coordinates ER-plasma membrane contact site formation through interaction with filamin-A and F-actin remodeling Molecular Cell 2017 65 5, article e886 885 899.e6 10.1016/j.molcel.2017.01.020 2-s2.0-85013498608 28238652 

  160. 160 Tameire F. Verginadis I. I. Koumenis C. Cell intrinsic and extrinsic activators of the unfolded protein response in cancer: mechanisms and targets for therapy Seminars in Cancer Biology 2015 33 3 15 10.1016/j.semcancer.2015.04.002 2-s2.0-84938198681 25920797 

  161. 161 Obacz J. Avril T. Rubio-Patino C. Regulation of tumor-stroma interactions by the unfolded protein response FEBS Journal 2019 286 2 279 296 10.1111/febs.14359 2-s2.0-85042941761 29239107 

  162. 162 Wang M. Kaufman R. J. The impact of the endoplasmic reticulum protein-folding environment on cancer development Nature Reviews Cancer 2014 14 9 581 597 10.1038/nrc3800 2-s2.0-84906712846 25145482 

  163. 163 Avril T. Vauleon E. Chevet E. Endoplasmic reticulum stress signaling and chemotherapy resistance in solid cancers Oncogenesis 2017 6 8, article e373 10.1038/oncsis.2017.72 28846078 

  164. 164 Chen S. Chen J. Hua X. The emerging role of XBP1 in cancer Biomedicine & Pharmacotherapy 2020 127, article 110069 10.1016/j.biopha.2020.110069 

  165. 165 Shi W. Chen Z. Li L. Unravel the molecular mechanism of XBP1 in regulating the biology of cancer cells Journal of Cancer. 2019 10 9 2035 2046 10.7150/jca.29421 2-s2.0-85067291960 31205564 

  166. 166 Van Genderen M. H. Buck H. M. Protein complexation with DNA phosphates as a cause for DNA duplex destabilization: a thermodynamic model Biopolymers 1989 28 10 1653 1665 10.1002/bip.360281002 2-s2.0-0024469241 2597722 

  167. 167 Wu S. Du R. Gao C. Kang J. Wen J. Sun T. The role of XBP1s in the metastasis and prognosis of hepatocellular carcinoma Biochemical and Biophysical Research Communications 2018 500 3 530 537 10.1016/j.bbrc.2018.04.033 2-s2.0-85046154746 29627568 

  168. 168 Fujimoto T. Yoshimatsu K. Watanabe K. Overexpression of human X-box binding protein 1 (XBP-1) in colorectal adenomas and adenocarcinomas Anticancer Research 2007 27 1A 127 131 17352224 

  169. 169 Wang M. Ruan S. Ming J. Dong F. Nuclear expression of XBP1s is correlated with breast cancer survival: a retrospective analysis based on tissue microarray OncoTargets and Therapy 2017 10 5927 5934 10.2147/OTT.S147102 2-s2.0-85039712263 29276395 

  170. 170 Chen C. Zhang X. IRE1 α -XBP1 pathway promotes melanoma progression by regulating IL-6/STAT3 signaling Journal of Translational Medicine 2017 15 1 p. 42 10.1186/s12967-017-1147-2 2-s2.0-85013426758 28222747 

  171. 171 Jin C. Jin Z. Chen N. Z. Activation of IRE1 α -XBP1 pathway induces cell proliferation and invasion in colorectal carcinoma Biochemical and Biophysical Research Communications 2016 470 1 75 81 10.1016/j.bbrc.2015.12.119 2-s2.0-84956588404 26742428 

  172. 172 Mhaidat N. M. Alzoubi K. H. Abushbak A. X-box binding protein 1 (XBP-1) enhances colorectal cancer cell invasion Journal of Chemotherapy 2015 27 3 167 173 10.1179/1973947815Y.0000000006 2-s2.0-84931048048 25692573 

  173. 173 Fang P. Xiang L. Huang S. IRE1 α -XBP1 signaling pathway regulates IL-6 expression and promotes progression of hepatocellular carcinoma Oncology Letters 2018 16 4 4729 4736 10.3892/ol.2018.9176 2-s2.0-85052403007 30214606 

  174. 174 Xia T. Tong S. Fan K. XBP1 induces MMP-9 expression to promote proliferation and invasion in human esophageal squamous cell carcinoma American Journal of Cancer Research 2016 6 9 2031 2040 27725908 

  175. 175 Chen X. Iliopoulos D. Zhang Q. XBP1 promotes triple-negative breast cancer by controlling the HIF1 α pathway Nature 2014 508 7494 103 107 10.1038/nature13119 2-s2.0-84897541350 24670641 

  176. 176 Zhang K. Liu H. Song Z. The UPR transducer IRE1 promotes breast cancer malignancy by degrading tumor suppressor microRNAs iScience 2020 23 9, article 101503 10.1016/j.isci.2020.101503 32911332 

  177. 177 Han J. Back S. H. Hur J. ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death Nature Cell Biology 2013 15 5 481 490 10.1038/ncb2738 2-s2.0-84877578475 23624402 

  178. 178 Feng Y. X. Sokol E. S. Del Vecchio C. A. Epithelial-to-mesenchymal transition activates PERK–eIF2 α and sensitizes cells to endoplasmic reticulum stress Cancer Discovery 2014 4 6 702 715 10.1158/2159-8290.CD-13-0945 2-s2.0-84904053401 24705811 

  179. 179 Feng Y. X. Jin D. X. Sokol E. S. Reinhardt F. Miller D. H. Gupta P. B. Cancer-specific PERK signaling drives invasion and metastasis through CREB3L1 Nature Communications 2017 8 1, article 1079 10.1038/s41467-017-01052-y 2-s2.0-85032036010 29057869 

  180. 180 Del Vecchio C. A. Feng Y. Sokol E. S. De-differentiation confers multidrug resistance via noncanonical PERK-Nrf2 signaling PLoS Biology 2014 12 9, article e1001945 10.1371/journal.pbio.1001945 2-s2.0-84920464700 25203443 

  181. 181 Sheng W. Wang G. Tang J. Calreticulin promotes EMT in pancreatic cancer via mediating Ca 2+ dependent acute and chronic endoplasmic reticulum stress Journal of Experimental and Clinical Cancer Research 2020 39 1 p. 209 10.1186/s13046-020-01702-y 33028359 

  182. 182 Bobak Y. Kurlishchuk Y. Vynnytska-Myronovska B. Arginine deprivation induces endoplasmic reticulum stress in human solid cancer cells International Journal of Biochemistry & Cell Biology 2016 70 29 38 10.1016/j.biocel.2015.10.027 2-s2.0-84947997631 26546743 

  183. 183 Epple L. M. Dodd R. D. Merz A. L. Induction of the unfolded protein response drives enhanced metabolism and chemoresistance in glioma cells PLoS One 2013 8 8, article e73267 10.1371/journal.pone.0073267 2-s2.0-84881569183 24039668 

  184. 184 Shuda M. Kondoh N. Imazeki N. Activation of the ATF6, XBP1 and grp78 genes in human hepatocellular carcinoma: a possible involvement of the ER stress pathway in hepatocarcinogenesis Journal of Hepatology 2003 38 5 605 614 10.1016/S0168-8278(03)00029-1 2-s2.0-0038216621 12713871 

  185. 185 Zeindl-Eberhart E. Brandl L. Liebmann S. Epithelial-mesenchymal transition induces endoplasmic-reticulum-stress response in human colorectal tumor cells PLoS One 2014 9 1, article e87386 10.1371/journal.pone.0087386 2-s2.0-84900302704 24498091 

  186. 186 Lee J. Y. Chang J. W. Yang W. S. Albumin-induced epithelial-mesenchymal transition and ER stress are regulated through a common ROS-c-Src kinase-mTOR pathway: effect of imatinib mesylate American Journal of Physiology-Renal Physiology 2011 300 5 F1214 F1222 10.1152/ajprenal.00710.2010 2-s2.0-79955775586 21367918 

  187. 187 Insel P. A. Sriram K. Wiley S. Z. GPCRomics: GPCR expression in cancer cells and tumors identifies new, potential biomarkers and therapeutic targets Frontiers in Pharmacology 2018 9 p. 431 10.3389/fphar.2018.00431 2-s2.0-85047427416 

  188. 188 Arakaki A. K. S. Pan W. A. Trejo J. GPCRs in cancer: protease-activated receptors, endocytic adaptors and signaling. International Journal of Molecular Sciences 2018 19 7 p. 1886 10.3390/ijms19071886 2-s2.0-85049167888 29954076 

  189. 189 Kubler E. Albrecht H. Large set data mining reveals overexpressed GPCRs in prostate and breast cancer: potential for active targeting with engineered anti-cancer nanomedicines Oncotarget 2018 9 38 24882 24897 10.18632/oncotarget.25427 2-s2.0-85047212495 29861840 

  190. 190 Wang Y. Liao R. Chen X. Twist-mediated PAR1 induction is required for breast cancer progression and metastasis by inhibiting Hippo pathway Cell Death and Disease 2020 11 7 p. 520 10.1038/s41419-020-2725-4 32647142 

  191. 191 McAuley J. R. Bailey K. M. Ekambaram P. MALT1 is a critical mediator of PAR1-driven NF- κ B activation and metastasis in multiple tumor types Oncogene 2019 38 49 7384 7398 10.1038/s41388-019-0958-4 2-s2.0-85071016687 31420608 

  192. 192 Zhong W. Chen S. Qin Y. Doxycycline inhibits breast cancer EMT and metastasis through PAR-1/NF- κ B/miR-17/E-cadherin pathway Oncotarget 2017 8 62 104855 104866 10.18632/oncotarget.20418 2-s2.0-85036549784 29285218 

  193. 193 Chan Y.‐. T. Lai A. C.‐. Y. Lin R.‐. J. GPER-induced signaling is essential for the survival of breast cancer stem cells International Journal of Cancer 2019 146 6 1674 1685 10.1002/ijc.32588 2-s2.0-85070755525 31340060 

  194. 194 Andradas C. Blasco-Benito S. Castillo-Lluva S. Activation of the orphan receptor GPR55 by lysophosphatidylinositol promotes metastasis in triple-negative breast cancer Oncotarget 2016 7 30 47565 47575 10.18632/oncotarget.10206 2-s2.0-84982803706 27340777 

  195. 195 Xiang Y. Yao X. Chen K. The G-protein coupled chemoattractant receptor FPR2 promotes malignant phenotype of human colon cancer cells American Journal of Cancer Research 2016 6 11 2599 2610 27904774 

  196. 196 Zheng X. Jia Y. Qiu L. A potential target for liver cancer management, lysophosphatidic acid receptor 6 (LPAR6), is transcriptionally up-regulated by the NCOA3 coactivator Journal of Biological Chemistry 2020 295 6 1474 1488 10.1074/jbc.RA119.009899 31914406 

  197. 197 Wu Q. Chen J. X. Chen Y. The chemokine receptor CCR10 promotes inflammation-driven hepatocarcinogenesis via PI3K/Akt pathway activation Cell Death and Disease 2018 9 2 p. 232 10.1038/s41419-018-0267-9 2-s2.0-85042117142 29445190 

  198. 198 Ferro R. Adamska A. Lattanzio R. GPR55 signalling promotes proliferation of pancreatic cancer cells and tumour growth in mice, and its inhibition increases effects of gemcitabine Oncogene 2018 37 49 6368 6382 10.1038/s41388-018-0390-1 2-s2.0-85052584122 30061636 

  199. 199 Luo W. Tan P. Rodriguez M. Leucine-rich repeat-containing G protein-coupled receptor 4 (Lgr4) is necessary for prostate cancer metastasis via epithelial-mesenchymal transition Journal of Biological Chemistry 2017 292 37 15525 15537 10.1074/jbc.M116.771931 2-s2.0-85029494660 28768769 

  200. 200 Harma V. Knuuttila M. Virtanen J. Lysophosphatidic acid and sphingosine-1-phosphate promote morphogenesis and block invasion of prostate cancer cells in three-dimensional organotypic models Oncogene 2012 31 16 2075 2089 10.1038/onc.2011.396 2-s2.0-84859910759 21996742 

  201. 201 Guo R. Kasbohm E. A. Arora P. Expression and function of lysophosphatidic acid LPA1 receptor in prostate cancer cells Endocrinology 2006 147 10 4883 4892 10.1210/en.2005-1635 2-s2.0-33748747873 16809448 

  202. 202 Liu M. Zhao Y. Y. Yang F. Evidence for a role of GPRC6A in prostate cancer metastasis based on case-control and in vitro analyses European Review for Medical and Pharmacological Sciences 2016 20 11 2235 2248 27338047 

  203. 203 Conboy C. B. Velez-Reyes G. L. Rathe S. K. R-spondins 2 and 3 are overexpressed in a subset of human colon and breast cancers DNA Cell Biology 2021 40 1 70 79 10.1089/dna.2020.5585 33320737 

  204. 204 Reyes-Vazquez L. Hernandez A. J. A. Calderon-Aranda E. S. Role of aromatase activation on sodium arsenite-induced proliferation, migration, and invasion of MDA-MB-231 and MDA-MB-453 breast cancer cell lines Toxicology 2020 437, article 152440 10.1016/j.tox.2020.152440 

  205. 205 Leve F. Peres-Moreira R. J. Binato R. Abdelhay E. Morgado-Diaz J. A. LPA induces colon cancer cell proliferation through a cooperation between the ROCK and STAT-3 pathways PLoS One 2015 10 9, article e0139094 10.1371/journal.pone.0139094 2-s2.0-84947967406 26418031 

  206. 206 Ren Z. Zhang C. Ma L. Lysophosphatidic acid induces the migration and invasion of SGC-7901 gastric cancer cells through the LPA2 and Notch signaling pathways International Journal of Molecular Medicine 2019 44 1 67 78 10.3892/ijmm.2019.4186 2-s2.0-85067374086 31115486 

  207. 207 Park J. Jang J. H. Oh S. LPA-induced migration of ovarian cancer cells requires activation of ERM proteins via LPA 1 and LPA 2 Cellular Signalling 2018 44 138 147 10.1016/j.cellsig.2018.01.007 2-s2.0-85041634281 29329782 

  208. 208 Yu X. Zhang Y. Chen H. LPA receptor 1 mediates LPA-induced ovarian cancer metastasis: an in vitro and in vivo study BMC Cancer 2016 16 1 p. 846 10.1186/s12885-016-2865-1 2-s2.0-84994341252 27809800 

  209. 209 Fukushima K. Takahashi K. Yamasaki E. Lysophosphatidic acid signaling via LPA 1 and LPA 3 regulates cellular functions during tumor progression in pancreatic cancer cells Experimental Cell Research 2017 352 1 139 145 10.1016/j.yexcr.2017.02.007 2-s2.0-85012910395 28189636 

  210. 210 Radhakrishnan R. Ha J. H. Jayaraman M. Ovarian cancer cell-derived lysophosphatidic acid induces glycolytic shift and cancer-associated fibroblast-phenotype in normal and peritumoral fibroblasts Cancer Letters 2019 442 464 474 10.1016/j.canlet.2018.11.023 2-s2.0-85057808609 30503552 

  211. 211 Hinsley E. E. de Oliveira C. E. Hunt S. Coletta R. D. Lambert D. W. Angiotensin 1-7 inhibits angiotensin II-stimulated head and neck cancer progression European Journal of Oral 2017 125 4 247 257 10.1111/eos.12356 2-s2.0-85021332583 

  212. 212 Tawinwung S. Ninsontia C. Chanvorachote P. Angiotensin II increases cancer stem cell-like phenotype in lung cancer cells Anticancer Research 2015 35 9 4789 4797 26254369 

  213. 213 Nowakowska M. Matysiak-Burzynska Z. Kowalska K. Pluciennik E. Dominska K. Piastowska-Ciesielska A. W. Angiotensin II promotes endometrial cancer cell survival Oncology Reports 2016 36 2 1101 1110 10.3892/or.2016.4887 2-s2.0-84976472011 27349856 

  214. 214 Matysiak-Burzynska Z. E. Nowakowska M. Dominska K. Kowalska K. Pluciennik E. Piastowska-Ciesielska A. W. Silencing of angiotensin receptor 1 interferes with angiotensin II oncogenic activity in endometrial cancer Journal of Cellular Biochemistry 2018 119 11 9110 9121 10.1002/jcb.27174 2-s2.0-85052404555 30105775 

  215. 215 Huang M. M. Guo A. B. Sun J. F. Chen X. L. Yin Z. Y. Angiotensin II promotes the progression of human gastric cancer Molecular Medicine Reports 2014 9 3 1056 1060 10.3892/mmr.2014.1891 2-s2.0-84893859693 24424956 

  216. 216 Pathania A. S. Ren X. Mahdi M. Y. Shackleford G. M. Erdreich-Epstein A. GRK2 promotes growth of medulloblastoma cells and protects them from chemotherapy-induced apoptosis Scientific Reports 2019 9 1, article 13902 10.1038/s41598-019-50157-5 2-s2.0-85072685295 31554835 

  217. 217 Zhang F. Xiang S. Cao Y. EIF3D promotes gallbladder cancer development by stabilizing GRK2 kinase and activating PI3K-AKT signaling pathway Cell Death and Disease 2017 8 6, article e2868 10.1038/cddis.2017.263 2-s2.0-85041119140 28594409 

  218. 218 Sang M. Hulsurkar M. Zhang X. GRK3 is a direct target of CREB activation and regulates neuroendocrine differentiation of prostate cancer cells Oncotarget 2016 7 29 45171 45185 10.18632/oncotarget.9359 2-s2.0-84979950768 27191986 

  219. 219 Li W. Ai N. Wang S. GRK3 is essential for metastatic cells and promotes prostate tumor progression Proceedings of the National Academy of Sciences of the United States of America 2014 111 4 1521 1526 10.1073/pnas.1320638111 2-s2.0-84893413021 24434559 

  220. 220 Jiang T. Yang C. Ma L. Overexpression of GRK3, promoting tumor proliferation, is predictive of poor prognosis in colon cancer Disease Markers 2017 2017 11 1202710 10.1155/2017/1202710 2-s2.0-85042218715 29445249 

  221. 221 Billard M. J. Fitzhugh D. J. Parker J. S. G protein coupled receptor kinase 3 regulates breast cancer migration, invasion, and metastasis PLoS One 2016 11 4, article e0152856 10.1371/journal.pone.0152856 2-s2.0-84962832761 27049755 

  222. 222 Matsubayashi J. Takanashi M. Oikawa K. Expression of G protein-coupled receptor kinase 4 is associated with breast cancer tumourigenesis The Journal of Pathology 2008 216 3 317 327 10.1002/path.2414 2-s2.0-55249127104 18767025 

  223. 223 Sommer A.-K. Falcenberg M. Ljepoja B. Downregulation of GRK5 hampers the migration of breast cancer cells Scientific Reports 2019 9 1, article 15548 10.1038/s41598-019-51923-1 31664083 

  224. 224 Jiang L. P. Fan S. Q. Xiong Q. X. GRK5 functions as an oncogenic factor in non-small-cell lung cancer Cell Death & Disease 2018 9 3 p. 295 10.1038/s41419-018-0299-1 2-s2.0-85042219243 29463786 

  225. 225 Chakraborty P. K. Zhang Y. Coomes A. S. G protein-coupled receptor kinase GRK5 phosphorylates moesin and regulates metastasis in prostate cancer Cancer Research 2014 74 13 3489 3500 10.1158/0008-5472.CAN-13-2708 2-s2.0-84903974277 24755472 

  226. 226 Kim J. I. Chakraborty P. Wang Z. Daaka Y. G-protein coupled receptor kinase 5 regulates prostate tumor growth Journal of Urology 2012 187 1 322 329 10.1016/j.juro.2011.09.049 2-s2.0-83555164622 

  227. 227 Zhao T. L. Gan X. X. Bao Y. Wang W. P. Liu B. Wang L. H. GRK5 promotes tumor progression in renal cell carcinoma Neoplasma 2019 66 2 261 270 10.4149/neo_2018_180621N409 2-s2.0-85061967839 30784280 

  228. 228 Kaur G. Kim J. Kaur R. G-protein coupled receptor kinase (GRK)-5 regulates proliferation of glioblastoma-derived stem cells Journal of Clinical Neuroscience 2013 20 7 1014 1018 10.1016/j.jocn.2012.10.008 2-s2.0-84879007603 23693024 

  229. 229 Tao R. Li Q. Gao X. Ma L. Overexpression of GRK6 associates with the progression and prognosis of colorectal carcinoma Oncology Letters 2018 15 4 5879 5886 10.3892/ol.2018.8030 2-s2.0-85042649608 29552218 

  230. 230 Che X. Zhang G. Zhang X. Xue J. Overexpression of G protein-coupled receptor kinase 6 (GRK6) is associated with progression and poor prognosis of papillary thyroid carcinoma Medical Science Monitor 2018 24 3540 3548 10.12659/MSM.908176 2-s2.0-85048746296 29805156 

  231. 231 Yuan L. Zhang H. Liu J. Growth factor receptor-Src-mediated suppression of GRK6 dysregulates CXCR4 signaling and promotes medulloblastoma migration Molecular Cancer 2013 12 1 p. 18 10.1186/1476-4598-12-18 2-s2.0-84874478012 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로