$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] A deep learning and similarity-based hierarchical clustering approach for pathological stage prediction of papillary renal cell carcinoma 원문보기

Computational and structural biotechnology journal, v.18, 2020년, pp.2639 - 2646  

Lee, Sugi (Department of Bioinformatics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea) ,  Jung, Jaeeun (Department of Environmental Disease Research Centers, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea) ,  Park, Ilkyu (Department of Bioinformatics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea) ,  Park, Kunhyang (Department of Core Facility Management Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea) ,  Kim, Dae-Soo (Department of Bioinformatics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea)

Abstract AI-Helper 아이콘AI-Helper

Papillary renal cell carcinoma (pRCC), which accounts for 10–15% of renal cell carcinomas, is the second most frequent renal cell carcinoma. pRCC patient classification is difficult because of disease heterogeneity, histologic subtypes, and variations in both disease progression and patient o...

Keyword

참고문헌 (39)

  1. 1 Rahimi A, Gonen M. Discriminating early- and late-stage cancers using multiple kernel learning on gene sets. Bioinformatics 2018;34:i412?21. doi: 10.1093/bioinformatics/bty239. 

  2. 2 Fedele C. Tothill R.W. McArthur G.A. Navigating the challenge of tumor heterogeneity in cancer therapy Cancer Discovery 4 2 2014 146 148 24501303 

  3. 3 Muglia VF, Prando A. Renal cell carcinoma: histological classification and correlation with imaging findings. Radiol Bras 2015;48:166?74. doi: 10.1590/0100-3984.2013.1927. 

  4. 4 Arik D, Acikalin MF, Can C. Papillary renal cell carcinoma and collecting duct carcinoma combination. A case report and review of synchronous renal cell carcinoma subtypes in the same kidney. Arch Med Sci 2015;11:686?90. doi: 10.5114/aoms.2015.52378. 

  5. 5 Idikio H.A. Human cancer classification: a systems biology- based model integrating morphology, cancer stem cells, proteomics, and genomics J Cancer 2 2011 107 115 10.7150/jca.2.107 21479129 

  6. 6 Ravaud A. Oudard S. De Fromont M. Chevreau C. Gravis G. Zanetta S. Theodore C. Jimenez M. Sevin E. Laguerre B. Rolland F. Ouali M. Culine S. Escudier B. First-line treatment with sunitinib for type 1 and type 2 locally advanced or metastatic papillary renal cell carcinoma: a phase II study (SUPAP) by the French Genitourinary Group (GETUG) Ann Oncol 26 6 2015 1123 1128 10.1093/annonc/mdv149 25802238 

  7. 7 Delahunt B. Eble J.N. Papillary renal cell carcinoma: a clinicopathologic and immunohistochemical study of 105 tumors Mod Pathol 10 1997 537 544 9195569 

  8. 8 Warren A.Y. Harrison D. WHO/ISUP classification, grading and pathological staging of renal cell carcinoma: standards and controversies World J Urol 36 12 2018 1913 1926 10.1007/s00345-018-2447-8 30123932 

  9. 9 Ricketts CJ, De Cubas AA, Spellman PT, Kimryn Rathmell W, Linehan WM. The cancer genome atlas comprehensive molecular characterization of renal cell carcinoma. Cell Rep 2018;23:313?26. doi: 10.1016/j.celrep.2018.03.075. 

  10. 10 Vogelzang N.J. Stadler W.M. Kidney cancer The Lancet 352 9141 1998 1691 1696 10.1016/S0140-6736(98)01041-1 

  11. 11 Linehan W.M. Spellman P.T. Ricketts C.J. Creighton C.J. Fei S.S. Davis C. Comprehensive molecular characterization of papillary renal-cell carcinoma N Engl J Med 374 2016 135 145 10.1056/NEJMoa1505917 26536169 

  12. 12 Waldert M. Haitel A. Marberger M. Katzenbeisser D. Ozsoy M. Stadler E. Comparison of type I and II papillary renal cell carcinoma (RCC) and clear cell RCC BJU Int 102 2008 1381 1384 10.1111/j.1464-410X.2008.07999.x 18782311 

  13. 13 Lee J. Chae H.K. Lee W. Nam W. Lim B. Choi S.Y. Kyung Y.S. You D. Jeong I.G. Song C. Hong B. Hong J.H. Ahn H. Kim C.-S. Comparison of prognosis in types 1 and 2 papillary renal cell carcinoma and clear cell renal cell carcinoma in T1 stage Korean J Urol Oncol 16 3 2018 119 125 

  14. 14 Liu K. Ren Y. Pang L. Qi Y. Jia W. Tao L. Papillary renal cell carcinoma: A clinicopathological and whole-genome exon sequencing study Int J Clin Exp Pathol 8 2015 8311 8335 26339402 

  15. 15 Jagga Z. Gupta D. Classification models for clear cell renal carcinoma stage progression, based on tumor RNAseq expression trained supervised machine learning algorithms BMC Proc 8 S6 2014 10.1186/1753-6561-8-S6-S2 

  16. 16 Kaur H, Bhalla S, Raghava GPS. Classification of early and late stage liver hepatocellular carcinoma patients from their genomics and epigenomics profiles. PLoS One 2019;14. doi: 10.1371/journal.pone.0221476. 

  17. 17 Zar JH. Biostatistical Analysis ? ERRATA. Prentice Hall New Jersey USA 2010:663. doi: 10.1037/0012764. 

  18. 18 Radovic M. Ghalwash M. Filipovic N. Obradovic Z. Minimum redundancy maximum relevance feature selection approach for temporal gene expression data BMC Bioinf 18 1 2017 10.1186/s12859-016-1423-9 

  19. 19 Melkumova L.E. Shatskikh S.Y. Comparing Ridge and LASSO estimators for data analysis Procedia Eng 201 2017 746 755 10.1016/j.proeng.2017.09.615 

  20. 20 Candel A. Parmar V. Lelell E. Arora A. Lanford J. Deep learning with H 2 O 5th ed. 2016 Mountain View CA, USA 

  21. 21 Alemu H, Wu W, Zhao J. Feedforward Neural Networks with a Hidden Layer Regularization Method. Symmetry (Basel) 2018;10:525. doi: 10.3390/sym10100525. 

  22. 22 Wang H. He X. Detecting differential expressions in GeneChip microarray studies: a quantile approach J Am Stat Assoc 102 477 2007 104 112 

  23. 23 Smid M, Rodriguez-Gonzalez FG, Sieuwerts AM, Salgado R, Prager-Van Der Smissen WJC, Vlugt-Daane M Van Der, et al. Breast cancer genome and transcriptome integration implicates specific mutational signatures with immune cell infiltration. Nat Commun 2016;7:1?9. doi: 10.1038/ncomms12910. 

  24. 24 Liao W, Ying Yang M, Zhan N, Rosenhahn B. Triplet-Based Deep Similarity Learning for Person Re-Identification 2017:385?93. 

  25. 25 Sorlie T. Perou C.M. Tibshirani R. Aas T. Geisler S. Johnsen H. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications Proc Natl Acad Sci 98 19 2001 10869 10874 11553815 

  26. 26 Perou C.M. Sørlie T. Eisen M.B. van de Rijn M. Jeffrey S.S. Rees C.A. Pollack J.R. Ross D.T. Johnsen H. Akslen L.A. Fluge Ø. Pergamenschikov A. Williams C. Zhu S.X. Lønning P.E. Børresen-Dale A.-L. Brown P.O. Botstein D. Molecular portraits of human breast tumours Nature 406 6797 2000 747 752 10.1038/35021093 10963602 

  27. 27 Vogelstein B. Papadopoulos N. Velculescu V.E. Zhou S. Diaz L.A. Kinzler K.W. Cancer Genome Landscapes Science 339 6127 2013 1546 1558 23539594 

  28. 28 He Z. Sun M. Ke Y. Lin R. Xiao Y. Zhou S. Zhao H. Wang Y. Zhou F. Zhou Y. Identifying biomarkers of papillary renal cell carcinoma associated with pathological stage by weighted gene co-expression network analysis Oncotarget 8 17 2017 27904 27914 28427189 

  29. 29 Singh N.P. Bapi R.S. Vinod P.K. Machine learning models to predict the progression from early to late stages of papillary renal cell carcinoma Comput Biol Med 100 2018 92 99 10.1016/j.compbiomed.2018.06.030 29990647 

  30. 30 Gao F. Wang W. Tan M. Zhu L. Zhang Y. Fessler E. Vermeulen L. Wang X. DeepCC: a novel deep learning-based framework for cancer molecular subtype classification Oncogenesis 8 9 2019 10.1038/s41389-019-0157-8 

  31. 31 Karabulut E.M. Ibrikci T. Discriminative deep belief networks for microarray based cancer classification Biomed Res 28 2017 1016 1024 

  32. 32 Fakoor R, Ladhak F, Nazi A, Huber M. Using deep learning to enhance cancer diagnosis and classification 2013. 

  33. 33 Liu J, Lichtenberg T, Hoadley KA, Poisson LM, Lazar AJ, Cherniack AD, et al. An integrated TCGA pan-cancer clinical data resource to drive high-quality survival outcome analytics. Cell 2018;173:400-416.e11. doi: 10.1016/j.cell.2018.02.052. 

  34. 34 Huo D. Hu H. Rhie S.K. Gamazon E.R. Cherniack A.D. Liu J. Yoshimatsu T.F. Pitt J.J. Hoadley K.A. Troester M. Ru Y. Lichtenberg T. Sturtz L.A. Shelley C.S. Benz C.C. Mills G.B. Laird P.W. Shriver C.D. Perou C.M. Olopade O.I. Comparison of breast cancer molecular features and survival by African and European ancestry in the cancer genome atlas JAMA Oncol 3 12 2017 1654 10.1001/jamaoncol.2017.0595 28472234 

  35. 35 Verhaak RGW, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 2010;17:98?110. doi: 0.1016/j.ccr.2009.12.020. 

  36. 36 Shirkhorshidi AS, Aghabozorgi S, Wah TY. A comparison study on similarity and dissimilarity measures in clustering continuous data. PLoS One 2015;10:e0144059. doi: 10.1371/journal.pone.0144059. 

  37. 37 Chen L, Yuan L, Qian K, Qian G, Zhu Y, Wu CL, et al. Identification of biomarkers associated with pathological stage and prognosis of clear cell renal cell carcinoma by co-expression network analysis. Front Physiol 2018;9. doi: 10.3389/fphys.2018.00399. 

  38. 38 Ljungberg B. Bensalah K. Canfield S. Dabestani S. Hofmann F. Hora M. Kuczyk M.A. Lam T. Marconi L. Merseburger A.S. Mulders P. Powles T. Staehler M. Volpe A. Bex A. EAU guidelines on renal cell carcinoma: 2014 update Eur Urol 67 5 2015 913 924 10.1016/j.eururo.2015.01.005 25616710 

  39. 39 Coppin C, Kollmannsberger C, Le L, Porzsolt F, Wilt TJ. Targeted therapy for advanced renal cell cancer (RCC): A Cochrane systematic review of published randomised trials. BJU Int 2011;108:1556?63. doi: 10.1111/j.1464-410X.2011.10629.x. 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로