최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Computational and structural biotechnology journal, v.18, 2020년, pp.2639 - 2646
Lee, Sugi (Department of Bioinformatics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea) , Jung, Jaeeun (Department of Environmental Disease Research Centers, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea) , Park, Ilkyu (Department of Bioinformatics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea) , Park, Kunhyang (Department of Core Facility Management Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea) , Kim, Dae-Soo (Department of Bioinformatics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea)
Papillary renal cell carcinoma (pRCC), which accounts for 10–15% of renal cell carcinomas, is the second most frequent renal cell carcinoma. pRCC patient classification is difficult because of disease heterogeneity, histologic subtypes, and variations in both disease progression and patient o...
1 Rahimi A, Gonen M. Discriminating early- and late-stage cancers using multiple kernel learning on gene sets. Bioinformatics 2018;34:i412?21. doi: 10.1093/bioinformatics/bty239.
2 Fedele C. Tothill R.W. McArthur G.A. Navigating the challenge of tumor heterogeneity in cancer therapy Cancer Discovery 4 2 2014 146 148 24501303
3 Muglia VF, Prando A. Renal cell carcinoma: histological classification and correlation with imaging findings. Radiol Bras 2015;48:166?74. doi: 10.1590/0100-3984.2013.1927.
4 Arik D, Acikalin MF, Can C. Papillary renal cell carcinoma and collecting duct carcinoma combination. A case report and review of synchronous renal cell carcinoma subtypes in the same kidney. Arch Med Sci 2015;11:686?90. doi: 10.5114/aoms.2015.52378.
5 Idikio H.A. Human cancer classification: a systems biology- based model integrating morphology, cancer stem cells, proteomics, and genomics J Cancer 2 2011 107 115 10.7150/jca.2.107 21479129
6 Ravaud A. Oudard S. De Fromont M. Chevreau C. Gravis G. Zanetta S. Theodore C. Jimenez M. Sevin E. Laguerre B. Rolland F. Ouali M. Culine S. Escudier B. First-line treatment with sunitinib for type 1 and type 2 locally advanced or metastatic papillary renal cell carcinoma: a phase II study (SUPAP) by the French Genitourinary Group (GETUG) Ann Oncol 26 6 2015 1123 1128 10.1093/annonc/mdv149 25802238
7 Delahunt B. Eble J.N. Papillary renal cell carcinoma: a clinicopathologic and immunohistochemical study of 105 tumors Mod Pathol 10 1997 537 544 9195569
8 Warren A.Y. Harrison D. WHO/ISUP classification, grading and pathological staging of renal cell carcinoma: standards and controversies World J Urol 36 12 2018 1913 1926 10.1007/s00345-018-2447-8 30123932
9 Ricketts CJ, De Cubas AA, Spellman PT, Kimryn Rathmell W, Linehan WM. The cancer genome atlas comprehensive molecular characterization of renal cell carcinoma. Cell Rep 2018;23:313?26. doi: 10.1016/j.celrep.2018.03.075.
10 Vogelzang N.J. Stadler W.M. Kidney cancer The Lancet 352 9141 1998 1691 1696 10.1016/S0140-6736(98)01041-1
11 Linehan W.M. Spellman P.T. Ricketts C.J. Creighton C.J. Fei S.S. Davis C. Comprehensive molecular characterization of papillary renal-cell carcinoma N Engl J Med 374 2016 135 145 10.1056/NEJMoa1505917 26536169
12 Waldert M. Haitel A. Marberger M. Katzenbeisser D. Ozsoy M. Stadler E. Comparison of type I and II papillary renal cell carcinoma (RCC) and clear cell RCC BJU Int 102 2008 1381 1384 10.1111/j.1464-410X.2008.07999.x 18782311
13 Lee J. Chae H.K. Lee W. Nam W. Lim B. Choi S.Y. Kyung Y.S. You D. Jeong I.G. Song C. Hong B. Hong J.H. Ahn H. Kim C.-S. Comparison of prognosis in types 1 and 2 papillary renal cell carcinoma and clear cell renal cell carcinoma in T1 stage Korean J Urol Oncol 16 3 2018 119 125
14 Liu K. Ren Y. Pang L. Qi Y. Jia W. Tao L. Papillary renal cell carcinoma: A clinicopathological and whole-genome exon sequencing study Int J Clin Exp Pathol 8 2015 8311 8335 26339402
15 Jagga Z. Gupta D. Classification models for clear cell renal carcinoma stage progression, based on tumor RNAseq expression trained supervised machine learning algorithms BMC Proc 8 S6 2014 10.1186/1753-6561-8-S6-S2
16 Kaur H, Bhalla S, Raghava GPS. Classification of early and late stage liver hepatocellular carcinoma patients from their genomics and epigenomics profiles. PLoS One 2019;14. doi: 10.1371/journal.pone.0221476.
17 Zar JH. Biostatistical Analysis ? ERRATA. Prentice Hall New Jersey USA 2010:663. doi: 10.1037/0012764.
18 Radovic M. Ghalwash M. Filipovic N. Obradovic Z. Minimum redundancy maximum relevance feature selection approach for temporal gene expression data BMC Bioinf 18 1 2017 10.1186/s12859-016-1423-9
19 Melkumova L.E. Shatskikh S.Y. Comparing Ridge and LASSO estimators for data analysis Procedia Eng 201 2017 746 755 10.1016/j.proeng.2017.09.615
20 Candel A. Parmar V. Lelell E. Arora A. Lanford J. Deep learning with H 2 O 5th ed. 2016 Mountain View CA, USA
21 Alemu H, Wu W, Zhao J. Feedforward Neural Networks with a Hidden Layer Regularization Method. Symmetry (Basel) 2018;10:525. doi: 10.3390/sym10100525.
22 Wang H. He X. Detecting differential expressions in GeneChip microarray studies: a quantile approach J Am Stat Assoc 102 477 2007 104 112
23 Smid M, Rodriguez-Gonzalez FG, Sieuwerts AM, Salgado R, Prager-Van Der Smissen WJC, Vlugt-Daane M Van Der, et al. Breast cancer genome and transcriptome integration implicates specific mutational signatures with immune cell infiltration. Nat Commun 2016;7:1?9. doi: 10.1038/ncomms12910.
24 Liao W, Ying Yang M, Zhan N, Rosenhahn B. Triplet-Based Deep Similarity Learning for Person Re-Identification 2017:385?93.
25 Sorlie T. Perou C.M. Tibshirani R. Aas T. Geisler S. Johnsen H. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications Proc Natl Acad Sci 98 19 2001 10869 10874 11553815
26 Perou C.M. Sørlie T. Eisen M.B. van de Rijn M. Jeffrey S.S. Rees C.A. Pollack J.R. Ross D.T. Johnsen H. Akslen L.A. Fluge Ø. Pergamenschikov A. Williams C. Zhu S.X. Lønning P.E. Børresen-Dale A.-L. Brown P.O. Botstein D. Molecular portraits of human breast tumours Nature 406 6797 2000 747 752 10.1038/35021093 10963602
27 Vogelstein B. Papadopoulos N. Velculescu V.E. Zhou S. Diaz L.A. Kinzler K.W. Cancer Genome Landscapes Science 339 6127 2013 1546 1558 23539594
28 He Z. Sun M. Ke Y. Lin R. Xiao Y. Zhou S. Zhao H. Wang Y. Zhou F. Zhou Y. Identifying biomarkers of papillary renal cell carcinoma associated with pathological stage by weighted gene co-expression network analysis Oncotarget 8 17 2017 27904 27914 28427189
29 Singh N.P. Bapi R.S. Vinod P.K. Machine learning models to predict the progression from early to late stages of papillary renal cell carcinoma Comput Biol Med 100 2018 92 99 10.1016/j.compbiomed.2018.06.030 29990647
30 Gao F. Wang W. Tan M. Zhu L. Zhang Y. Fessler E. Vermeulen L. Wang X. DeepCC: a novel deep learning-based framework for cancer molecular subtype classification Oncogenesis 8 9 2019 10.1038/s41389-019-0157-8
31 Karabulut E.M. Ibrikci T. Discriminative deep belief networks for microarray based cancer classification Biomed Res 28 2017 1016 1024
32 Fakoor R, Ladhak F, Nazi A, Huber M. Using deep learning to enhance cancer diagnosis and classification 2013.
33 Liu J, Lichtenberg T, Hoadley KA, Poisson LM, Lazar AJ, Cherniack AD, et al. An integrated TCGA pan-cancer clinical data resource to drive high-quality survival outcome analytics. Cell 2018;173:400-416.e11. doi: 10.1016/j.cell.2018.02.052.
34 Huo D. Hu H. Rhie S.K. Gamazon E.R. Cherniack A.D. Liu J. Yoshimatsu T.F. Pitt J.J. Hoadley K.A. Troester M. Ru Y. Lichtenberg T. Sturtz L.A. Shelley C.S. Benz C.C. Mills G.B. Laird P.W. Shriver C.D. Perou C.M. Olopade O.I. Comparison of breast cancer molecular features and survival by African and European ancestry in the cancer genome atlas JAMA Oncol 3 12 2017 1654 10.1001/jamaoncol.2017.0595 28472234
35 Verhaak RGW, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 2010;17:98?110. doi: 0.1016/j.ccr.2009.12.020.
36 Shirkhorshidi AS, Aghabozorgi S, Wah TY. A comparison study on similarity and dissimilarity measures in clustering continuous data. PLoS One 2015;10:e0144059. doi: 10.1371/journal.pone.0144059.
37 Chen L, Yuan L, Qian K, Qian G, Zhu Y, Wu CL, et al. Identification of biomarkers associated with pathological stage and prognosis of clear cell renal cell carcinoma by co-expression network analysis. Front Physiol 2018;9. doi: 10.3389/fphys.2018.00399.
38 Ljungberg B. Bensalah K. Canfield S. Dabestani S. Hofmann F. Hora M. Kuczyk M.A. Lam T. Marconi L. Merseburger A.S. Mulders P. Powles T. Staehler M. Volpe A. Bex A. EAU guidelines on renal cell carcinoma: 2014 update Eur Urol 67 5 2015 913 924 10.1016/j.eururo.2015.01.005 25616710
39 Coppin C, Kollmannsberger C, Le L, Porzsolt F, Wilt TJ. Targeted therapy for advanced renal cell cancer (RCC): A Cochrane systematic review of published randomised trials. BJU Int 2011;108:1556?63. doi: 10.1111/j.1464-410X.2011.10629.x.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.