$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Deep hierarchical embedding for simultaneous modeling of GPCR proteins in a unified metric space 원문보기

Scientific reports, v.11 no.1, 2021년, pp.9543 -   

Lee, Taeheon (Looxid Labs, Seoul, 06628 Republic of Korea) ,  Lee, Sangseon (BK21 FOUR Intelligence Computing, Seoul National University, Seoul, 08826 Republic of Korea) ,  Kang, Minji (Department of Computer Science, Stanford University, Stanford, CA 94305 USA) ,  Kim, Sun (Bioinformatics Institute, Seoul National University, Seoul, 08826 Republic of Korea)

Abstract AI-Helper 아이콘AI-Helper

GPCR proteins belong to diverse families of proteins that are defined at multiple hierarchical levels. Inspecting relationships between GPCR proteins on the hierarchical structure is important, since characteristics of the protein can be inferred from proteins in similar hierarchical information. Ho...

참고문헌 (44)

  1. 1. Fredriksson, R., Lagerström, M. C., Lundin, L.-G. & Schiöth, H. B. The g-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol. Pharmacol. 63 , 1256–1272 (2003). 

  2. 2. Bjarnadóttir TK Comprehensive repertoire and phylogenetic analysis of the g protein-coupled receptors in human and mouse Genomics 2006 88 263 273 10.1016/j.ygeno.2006.04.001 16753280 

  3. 3. Hauser AS Attwood MM Rask-Andersen M Schiöth HB Gloriam DE Trends in GPCR drug discovery: New agents, targets and indications Nat. Rev. Drug Discov. 2017 16 829 842 10.1038/nrd.2017.178 29075003 

  4. 4. Hauser AS Pharmacogenomics of GPCR drug targets Cell 2018 172 41 54 10.1016/j.cell.2017.11.033 29249361 

  5. 5. Mirzadegan T Benkö G Filipek S Palczewski K Sequence analyses of g-protein-coupled receptors: Similarities to rhodopsin Biochemistry 2003 42 2759 2767 10.1021/bi027224+ 12627940 

  6. 6. Hu G-M Mai T-L Chen C-M Visualizing the GPCR network: Classification and evolution Sci. Rep. 2017 7 15495 10.1038/s41598-017-15707-9 29138525 

  7. 7. Chan WK Glass: A comprehensive database for experimentally validated GPCR-ligand associations Bioinformatics 2015 31 3035 3042 10.1093/bioinformatics/btv302 25971743 

  8. 8. Bhasin M Raghava G GPCRpred: An SVM-based method for prediction of families and subfamilies of G-protein coupled receptors Nucleic Acids Res. 2004 32 W383 W389 10.1093/nar/gkh416 15215416 

  9. 9. Davies MN On the hierarchical classification of G protein-coupled receptors Bioinformatics 2007 23 3113 3118 10.1093/bioinformatics/btm506 17956878 

  10. 10. Peng Z-L Yang J-Y Chen X An improved classification of G-protein-coupled receptors using sequence-derived features BMC Bioinform. 2010 11 420 10.1186/1471-2105-11-420 

  11. 11. Davies MN Proteomic applications of automated GPCR classification Proteomics 2007 7 2800 2814 10.1002/pmic.200700093 17639603 

  12. 12. Qian B Soyer OS Neubig RR Goldstein RA Depicting a protein’s two faces: GPCR classification by phylogenetic tree-based HMMS FEBS Lett. 2003 554 95 99 10.1016/S0014-5793(03)01112-8 14596921 

  13. 13. Zielezinski A Vinga S Almeida J Karlowski WM Alignment-free sequence comparison: Benefits, applications, and tools Genome Biol. 2017 18 186 10.1186/s13059-017-1319-7 28974235 

  14. 14. Wang L Jiang T On the complexity of multiple sequence alignment J. Comput. Biol. 1994 1 337 348 10.1089/cmb.1994.1.337 8790475 

  15. 15. Hou J Adhikari B Cheng J DeepSF: Deep convolutional neural network for mapping protein sequences to folds Bioinformatics 2018 34 1295 1303 10.1093/bioinformatics/btx780 29228193 

  16. 16. Lanchantin, J., Singh, R., Lin, Z. & Qi, Y. Deep motif: Visualizing genomic sequence classifications. arXiv preprint arXiv:1605.01133 (2016). 

  17. 17. Seo S Oh M Park Y Kim S DeepFam: Deep learning based alignment-free method for protein family modeling and prediction Bioinformatics 2018 34 i254 i262 10.1093/bioinformatics/bty275 29949966 

  18. 18. Yusuf SM Zhang F Zeng M Li M DeepPPF: A deep learning framework for predicting protein family Neurocomputing 2021 428 19 29 10.1016/j.neucom.2020.11.062 

  19. 19. Chopra, S., Hadsell, R. & LeCun, Y. Learning a similarity metric discriminatively, with application to face verification. In 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05) , Vol. 1, 539–546 (IEEE, 2005). 

  20. 20. Hoffer, E. & Ailon, N. Deep metric learning using triplet network. In International Workshop on Similarity-Based Pattern Recognition , 84–92 (Springer, 2015). 

  21. 21. Wen, Y., Zhang, K., Li, Z. & Qiao, Y. A discriminative feature learning approach for deep face recognition. In European Conference on Computer Vision , 499–515 (Springer, 2016). 

  22. 22. Zheng, W. et al. Sense: Siamese neural network for sequence embedding and alignment-free comparison. Bioinformatics (2018). 

  23. 23. Bepler, T. & Berger, B. Learning protein sequence embeddings using information from structure. arXiv preprint arXiv:1902.08661 (2019). 

  24. 24. Feldbauer, R. et al. Deepnog: Fast and accurate protein orthologous group assignment. Bioinformatics (2020). 

  25. 25. Cobanoglu MC Saygin Y Sezerman U Classification of GPCRS using family specific motifs IEEE/ACM Trans. Comput. Biol. Bioinform. 2010 8 1495 1508 10.1109/TCBB.2010.101 

  26. 26. Nam, H. & Han, B. Learning multi-domain convolutional neural networks for visual tracking. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition , 4293–4302 (2016). 

  27. 27. Schroff, F., Kalenichenko, D. & Philbin, J. Facenet: A unified embedding for face recognition and clustering. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition , 815–823 (2015). 

  28. 28. Saitou N Nei M The neighbor-joining method: A new method for reconstructing phylogenetic trees Mol. Biol. Evol. 1987 4 406 425 3447015 

  29. 29. Edgar RC Muscle: Multiple sequence alignment with high accuracy and high throughput Nucleic Acids Res. 2004 32 1792 1797 10.1093/nar/gkh340 15034147 

  30. 30. Hwang, Y., Han, B. & Ahn, H.-K. A fast nearest neighbor search algorithm by nonlinear embedding. In 2012 IEEE Conference on Computer Vision and Pattern Recognition , 3053–3060 (IEEE, 2012). 

  31. 31. Altschul SF Gish W Miller W Myers EW Lipman DJ Basic local alignment search tool J. Mol. Biol. 1990 215 403 410 10.1016/S0022-2836(05)80360-2 2231712 

  32. 32. Quang D Xie X DanQ: A hybrid convolutional and recurrent deep neural network for quantifying the function of DNA sequences Nucleic Acids Res. 2016 44 e107 e107 10.1093/nar/gkw226 27084946 

  33. 33. Pan X Rijnbeek P Yan J Shen H-B Prediction of RNA-protein sequence and structure binding preferences using deep convolutional and recurrent neural networks BMC Genomics 2018 19 511 10.1186/s12864-018-4889-1 29970003 

  34. 34. Paszke, A. et al. Pytorch: An imperative style, high-performance deep learning library. In Wallach, H. et al. (eds.) Advances in Neural Information Processing Systems , Vol. 32, 8024–8035 (Curran Associates, Inc., 2019). 

  35. 35. Müllner, D. Modern hierarchical, agglomerative clustering algorithms. arXiv preprint arXiv:1109.2378 (2011). 

  36. 36. Maaten, Lvd & Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 9 , 2579–2605 (2008). 

  37. 37. Crooks GE Hon G Chandonia J-M Brenner SE WebLogo: A sequence logo generator Genome Res. 2004 14 1188 1190 10.1101/gr.849004 15173120 

  38. 38. Rosenbaum DM Rasmussen SG Kobilka BK The structure and function of G-protein-coupled receptors Nature 2009 459 356 10.1038/nature08144 19458711 

  39. 39. Rovati GE Capra V Neubig RR The highly conserved dry motif of class Ag protein-coupled receptors: Beyond the ground state Mol. Pharmacol. 2007 71 959 964 10.1124/mol.106.029470 17192495 

  40. 40. Harmar, A. J. Family-B G-protein-coupled receptors. Genome Biol. 2 , reviews3013-1 (2001). 

  41. 41. Naveed M Khan AU GPCR-MPredictor: Multi-level prediction of G protein-coupled receptors using genetic ensemble Amino Acids 2012 42 1809 1823 10.1007/s00726-011-0902-6 21505826 

  42. 42. Zadeh, P. H., Hosseini, R. & Sra, S. Deep-RBF networks revisited: Robust classification with rejection. arXiv preprint arXiv:1812.03190 (2018). 

  43. 43. Waskom, M. L. Seaborn: Statistical data visualization. J. Open Source Softw. 6 , 3021. 10.21105/joss.03021 (2021). 

  44. 44. Asnicar F Weingart G Tickle TL Huttenhower C Segata N Compact graphical representation of phylogenetic data and metadata with graphlan PeerJ 2015 3 e1029 10.7717/peerj.1029 26157614 

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로