$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Multi-Omic Analyses Reveal Habitat Adaptation of Marine Cyanobacterium Synechocystis sp. PCC 7338 원문보기

Frontiers in microbiology, v.12, 2021년, pp.667450 -   

Jeong, Yujin (Department of Biological Sciences, Korea Advanced Institute of Science and Technology , Daejeon , South Korea) ,  Hong, Seong-Joo (Department of Biological Engineering, Inha University , Incheon , South Korea) ,  Cho, Sang-Hyeok (Department of Biological Sciences, Korea Advanced Institute of Science and Technology , Daejeon , South Korea) ,  Yoon, Seonghoon (Department of Biological Engineering, Inha University , Incheon , South Korea) ,  Lee, Hookeun (Institute of Pharmaceutical Research, College of Pharmacy, Gachon University , Incheon , South Korea) ,  Choi, Hyung-Kyoon (College of Pharmacy, Chung-Ang University , Seoul , South Korea) ,  Kim, Dong-Myung (Department of Chemical Engineering and Applied Chemistry, Chungnam National University , Daejeon , South Korea) ,  Lee, Choul-Gyun (Department of Biological Engineering, Inha University , Incheon , South Korea) ,  Cho, Suhyung ,  Cho, Byung-Kwan

Abstract AI-Helper 아이콘AI-Helper

Cyanobacteria are considered as promising microbial cell factories producing a wide array of bio-products. Among them, Synechocystis sp. PCC 7338 has the advantage of growing in seawater, rather than requiring arable land or freshwater. Nonetheless, how this marine cyanobacterium grows under the hig...

Keyword

참고문헌 (69)

  1. Akai M. Onai K. Morishita M. Mino H. Shijuku T. Maruyama H. ( 2012 ). Aquaporin AqpZ is involved in cell volume regulation and sensitivity to osmotic stress in Synechocystis sp. strain PCC 6803. J. Bacteriol. 194 6828 – 6836 . 10.1128/JB.01665-12 23043001 

  2. Allakhverdiev S. I. Murata N. ( 2004 ). Environmental stress inhibits the synthesis de novo of proteins involved in the photodamage-repair cycle of Photosystem II in Synechocystis sp. PCC 6803. Biochim. Biophys. Acta 1657 23 – 32 . 10.1016/j.bbabio.2004.03.003 15238209 

  3. Allakhverdiev S. I. Murata N. ( 2008 ). Salt stress inhibits photosystems II and I in cyanobacteria. Photosynth. Res. 98 529 – 539 . 18670904 

  4. Allen J. F. Bennett J. Steinback K. E. Arntzen C. J. J. N. ( 1981 ). Chloroplast protein phosphorylation couples plastoquinone redox state to distribution of excitation energy between photosystems. Nature 291 25 – 29 . 10.1023/A:1020414106993 

  5. Bailey T. L. Boden M. Buske F. A. Frith M. Grant C. E. Clementi L. ( 2009 ). MEME SUITE: tools for motif discovery and searching. Nucleic Acids. Res. 37 W202 – W208 . 19458158 

  6. Camsund D. Lindblad P. ( 2014 ). Engineered transcriptional systems for cyanobacterial biotechnology. Front. Bioeng. Biotechnol. 2 : 40 . 10.3389/fbioe.2014.00040 25325057 

  7. Chang L. Liu X. Li Y. Liu C. C. Yang F. Zhao J. ( 2015 ). Structural organization of an intact phycobilisome and its association with photosystem II. Cell Res. 25 726 – 737 . 10.1038/cr.2015.59 25998682 

  8. Cho S.-H. Jeong Y. ( 2020 ). Data from Synechocystis sp. PCC 6803 NGS data . (Sequence Read Archive). Available online at: https://www.ncbi.nlm.nih.gov/sra/SRR12763770 and https://www.ncbi.nlm.nih.gov/sra/SRR12763771 (accessed October 01, 2020) . 

  9. Crooks G. E. Hon G. Chandonia J. M. Brenner S. E. ( 2004 ). WebLogo: a sequence logo generator. Genome Res. 14 1188 – 1190 . 15173120 

  10. Cui J. Sun T. Chen L. Zhang W. ( 2020 ). Engineering salt tolerance of photosynthetic cyanobacteria for seawater utilization. Biotechnol. Adv. 43 : 107578 . 

  11. Dang T. C. Fujii M. Rose A. L. Bligh M. Waite T. D. ( 2012 ). Characteristics of the freshwater cyanobacterium Microcystis aeruginosa grown in iron-limited continuous culture. Appl. Environ. Microbiol. 78 1574 – 1583 . 10.1128/AEM.06908-11 22210212 

  12. Dar D. Prasse D. Schmitz R. A. Sorek R. ( 2016a ). Widespread formation of alternative 3’ UTR isoforms via transcription termination in archaea. Nat. Microbiol. 1 : 16143 . 10.1038/nmicrobiol.2016.143 27670118 

  13. Dar D. Shamir M. Mellin J. R. Koutero M. Stern-Ginossar N. Cossart P. ( 2016b ). Term-seq reveals abundant ribo-regulation of antibiotics resistance in bacteria. Science 352 : aad9822 . 10.1126/science.aad9822 27120414 

  14. Dar D. Sorek R. ( 2018 ). High-resolution RNA 3’-ends mapping of bacterial Rho-dependent transcripts. Nucleic Acids Res. 46 6797 – 6805 . 29669055 

  15. Ducat D. C. Way J. C. Silver P. A. ( 2011 ). Engineering cyanobacteria to generate high-value products. Trends Biotechnol. 29 95 – 103 . 21211860 

  16. Grant C. E. Bailey T. L. Noble W. S. ( 2011 ). FIMO: scanning for occurrences of a given motif. Bioinformatics 27 1017 – 1018 . 10.1093/bioinformatics/btr064 21330290 

  17. Hagemann M. ( 2011 ). Molecular biology of cyanobacterial salt acclimation. FEMS Microbiol. Rev. 35 87 – 123 . 20618868 

  18. Hernandez-Prieto M. A. Semeniuk T. A. Giner-Lamia J. Futschik M. E. ( 2016 ). The transcriptional landscape of the photosynthetic model cyanobacterium Synechocystis sp. PCC6803. Sci. Rep. 6 : 22168 . 10.1038/srep22168 26923200 

  19. Hitchcock A. Hunter C. N. Canniffe D. P. ( 2020 ). Progress and challenges in engineering cyanobacteria as chassis for light-driven biotechnology. Microb. Biotechnol. 13 363 – 367 . 10.1111/1751-7915.13526 31880868 

  20. Huckauf J. Nomura C. Forchhammer K. Hagemann M. ( 2000 ). Stress responses of Synechocystis sp. strain PCC 6803 mutants impaired in genes encoding putative alternative sigma factors. Microbiology 146 ( Pt 11 ), 2877 – 2889 . 10.1099/00221287-146-11-2877 11065366 

  21. Hwang S. Lee N. Jeong Y. Lee Y. Kim W. Cho S. ( 2019 ). Primary transcriptome and translatome analysis determines transcriptional and translational regulatory elements encoded in the Streptomyces clavuligerus genome. Nucleic Acids Res. 47 6114 – 6129 . 10.1093/nar/gkz471 31131406 

  22. Imamura S. Asayama M. ( 2009 ). Sigma factors for cyanobacterial transcription. Gene Regul. Syst. Biol. 3 65 – 87 . 

  23. Jablonsky J. Papacek S. Hagemann M. ( 2016 ). Different strategies of metabolic regulation in cyanobacteria: from transcriptional to biochemical control. Sci. Rep. 6 : 33024 . 10.1038/srep33024 27611502 

  24. Jaffe E. K. ( 2003 ). An unusual phylogenetic variation in the metal ion binding sites of porphobilinogen synthase. Chem. Biol. 10 25 – 34 . 10.1016/s1074-5521(02)00296-x 12573695 

  25. Jain C. Rodriguez R. L. Phillippy A. M. Konstantinidis K. T. Aluru S. ( 2018 ). High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat. Commun. 9 : 5114 . 

  26. Jeong Y. Kim J. N. Kim M. W. Bucca G. Cho S. Yoon Y. J. ( 2016 ). The dynamic transcriptional and translational landscape of the model antibiotic producer Streptomyces coelicolor A3(2). Nat. Commun. 7 : 11605 . 10.1038/ncomms11605 27251447 

  27. Kaushik M. S. Singh P. Tiwari B. Mishra A. K. ( 2016 ). Ferric uptake regulator (FUR) protein: properties and implications in cyanobacteria. Ann. Microbiol. 66 61 – 75 . 

  28. Kim D. Hong J. S. Qiu Y. Nagarajan H. Seo J. H. Cho B. K. ( 2012 ). Comparative analysis of regulatory elements between Escherichia coli and Klebsiella pneumoniae by genome-wide transcription start site profiling. PLoS Genet. 8 : e1002867 . 10.1371/journal.pgen.1002867 22912590 

  29. Kopf M. Klahn S. Scholz I. Matthiessen J. K. Hess W. R. Voss B. ( 2014 ). Comparative analysis of the primary transcriptome of Synechocystis sp. PCC 6803. DNA Res. 21 527 – 539 . 10.1093/dnares/dsu018 24935866 

  30. Kumar S. Stecher G. Li M. Knyaz C. Tamura K. ( 2018 ). MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35 1547 – 1549 . 10.1093/molbev/msy096 29722887 

  31. Lalanne J. B. Taggart J. C. Guo M. S. Herzel L. Schieler A. Li G. W. ( 2018 ). Evolutionary convergence of pathway-specific enzyme expression stoichiometry. Cell 173 749.e38 – 761.e38 . 10.1016/j.cell.2018.03.007 29606352 

  32. Lamb J. J. Hill R. E. Eaton-Rye J. J. Hohmann-Marriott M. F. ( 2014 ). Functional role of PilA in iron acquisition in the cyanobacterium Synechocystis sp. PCC 6803 . PLoS One 9 : e105761 . 10.1371/journal.pone.0105761 25157828 

  33. Lan E. I. Liao J. C. ( 2011 ). Metabolic engineering of cyanobacteria for 1-butanol production from carbon dioxide. Metab. Eng. 13 353 – 363 . 21569861 

  34. Laughlin T. G. Savage D. F. Davies K. M. ( 2020 ). Recent advances on the structure and function of NDH-1: the complex I of oxygenic photosynthesis. Biochim. Biophys. Acta Bioenerg. 1861 : 148254 . 10.1016/j.bbabio.2020.148254 32645407 

  35. Lee Y. Lee N. Jeong Y. Hwang S. Kim W. Cho S. ( 2019 ). The transcription unit architecture of Streptomyces lividans TK24. Front. Microbiol. 10 : 2074 . 10.3389/fmicb.2019.02074 31555254 

  36. Lindberg P. Park S. Melis A. ( 2010 ). Engineering a platform for photosynthetic isoprene production in cyanobacteria, using Synechocystis as the model organism. Metab. Eng. 12 70 – 79 . 10.1016/j.ymben.2009.10.001 19833224 

  37. Lorenz R. Bernhart S. H. Honer Zu Siederdissen C. Tafer H. Flamm C. Stadler P. F. ( 2011 ). ViennaRNA Package 2.0. Algorithms Mol. Biol. 6 : 26 . 10.1186/1748-7188-6-26 22115189 

  38. Love M. I. Huber W. Anders S. ( 2014 ). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15 : 550 . 10.1186/s13059-014-0550-8 25516281 

  39. Luimstra V. M. Schuurmans J. M. De Carvalho C. F. M. Matthijs H. C. P. Hellingwerf K. J. Huisman J. ( 2019 ). Exploring the low photosynthetic efficiency of cyanobacteria in blue light using a mutant lacking phycobilisomes. Photosynth. Res. 141 291 – 301 . 10.1007/s11120-019-00630-z 30820745 

  40. Mitra A. Angamuthu K. Jayashree H. V. Nagaraja V. ( 2009 ). Occurrence, divergence and evolution of intrinsic terminators across eubacteria. Genomics 94 110 – 116 . 10.1016/j.ygeno.2009.04.004 19393739 

  41. Mitschke J. Georg J. Scholz I. Sharma C. M. Dienst D. Bantscheff J. ( 2011 ). An experimentally anchored map of transcriptional start sites in the model cyanobacterium Synechocystis sp. PCC6803. Proc. Natl. Acad. Sci. U.S.A. 108 2124 – 2129 . 10.1073/pnas.1015154108 21245330 

  42. Morrissey J. Bowler C. ( 2012 ). Iron utilization in marine cyanobacteria and eukaryotic algae. Front. Microbiol. 3 : 43 . 10.3389/fmicb.2012.00043 22408637 

  43. Mullineaux C. W. Allen J. F. ( 1990 ). State 1-State 2 transitions in the cyanobacterium Synechococcus 6301 are controlled by the redox state of electron carriers between Photosystems I and II. Photosynth. Res. 23 297 – 311 . 10.1007/BF00034860 24419653 

  44. Nakayama T. Kamikawa R. Tanifuji G. Kashiyama Y. Ohkouchi N. Archibald J. M. ( 2014 ). Complete genome of a nonphotosynthetic cyanobacterium in a diatom reveals recent adaptations to an intracellular lifestyle. Proc. Natl. Acad. Sci. U.S.A. 111 11407 – 11412 . 10.1073/pnas.1405222111 25049384 

  45. Nishiyama Y. Allakhverdiev S. I. Murata N. ( 2006 ). A new paradigm for the action of reactive oxygen species in the photoinhibition of photosystem II. Biochim. Biophys. Acta 1757 742 – 749 . 10.1016/j.bbabio.2006.05.013 16784721 

  46. Nishiyama Y. Yamamoto H. Allakhverdiev S. I. Inaba M. Yokota A. Murata N. ( 2001 ). Oxidative stress inhibits the repair of photodamage to the photosynthetic machinery. EMBO J. 20 5587 – 5594 . 11598002 

  47. Noh Y. Lee H. Hong S.-J. Lee H. Cho B.-K. Lee C.-G. ( 2020 ). Comparative primary metabolic and lipidomic profiling of freshwater and marine Synechocystis strains using by GC-MS and NanoESI-MS analyses. Biotechnol. Bioproc. Eng. 25 308 – 319 . 

  48. Oliver J. W. Machado I. M. Yoneda H. Atsumi S. ( 2013 ). Cyanobacterial conversion of carbon dioxide to 2,3-butanediol. Proc. Natl. Acad. Sci. U.S.A. 110 1249 – 1254 . 23297225 

  49. Omotajo D. Tate T. Cho H. Choudhary M. ( 2015 ). Distribution and diversity of ribosome binding sites in prokaryotic genomes. BMC Genomics 16 : 604 . 10.1186/s12864-015-1808-6 26268350 

  50. Perozo E. Rees D. C. ( 2003 ). Structure and mechanism in prokaryotic mechanosensitive channels. Curr. Opin. Struct. Biol. 13 432 – 442 . 12948773 

  51. Qiu Y. Cho B. K. Park Y. S. Lovley D. Palsson B. O. Zengler K. ( 2010 ). Structural and operational complexity of the Geobacter sulfurreducens genome. Genome Res. 20 1304 – 1311 . 10.1101/gr.107540.110 20592237 

  52. Ramey C. J. Baron-Sola A. Aucoin H. R. Boyle N. R. ( 2015 ). Genome engineering in cyanobacteria: where we are and where we need to go. ACS Synth. Biol. 4 1186 – 1196 . 10.1021/acssynbio.5b00043 25985322 

  53. Savakis P. E. Angermayr S. A. Hellingwerf K. J. ( 2013 ). Synthesis of 2,3-butanediol by Synechocystis sp. PCC6803 via heterologous expression of a catabolic pathway from lactic acid- and enterobacteria. Metab. Eng. 20 121 – 130 . 10.1016/j.ymben.2013.09.008 24104064 

  54. Sharma C. M. Hoffmann S. Darfeuille F. Reignier J. Findeiss S. Sittka A. ( 2010 ). The primary transcriptome of the major human pathogen Helicobacter pylori . Nature 464 250 – 255 . 10.1038/nature08756 20164839 

  55. Shcolnick S. Summerfield T. C. Reytman L. Sherman L. A. Keren N. ( 2009 ). The mechanism of iron homeostasis in the unicellular cyanobacterium Synechocystis sp. PCC 6803 and its relationship to oxidative stress. Plant Physiol. 150 2045 – 2056 . 10.1104/pp.109.141853 19561120 

  56. Simao F. A. Waterhouse R. M. Ioannidis P. Kriventseva E. V. Zdobnov E. M. ( 2015 ). BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31 3210 – 3212 . 26059717 

  57. Singh J. S. Kumar A. Rai A. N. Singh D. P. ( 2016 ). Cyanobacteria: a precious bio-resource in agriculture, ecosystem, and environmental sustainability. Front. Microbiol. 7 : 529 . 10.3389/fmicb.2016.00529 27148218 

  58. Todor H. Osadnik H. Campbell E. A. Myers K. S. Li H. Donohue T. J. ( 2020 ). Rewiring the specificity of extracytoplasmic function sigma factors. Proc. Natl. Acad. Sci. U.S.A. 117 33496 – 33506 . 10.1073/pnas.2020204117 33318184 

  59. Trentin G. Bertucco A. Sforza E. ( 2019 ). Mixotrophy in Synechocystis sp. for the treatment of wastewater with high nutrient content: effect of CO2 and light. Bioprocess Biosyst. Eng. 42 1661 – 1669 . 10.1007/s00449-019-02162-1 31230131 

  60. Unniraman S. Prakash R. Nagaraja V. ( 2002 ). Conserved economics of transcription termination in eubacteria. Nucleic Acids Res. 30 675 – 684 . 11809879 

  61. van Thor J. J. Jeanjean R. Havaux M. Sjollema K. A. Joset F. Hellingwerf K. J. ( 2000 ). Salt shock-inducible photosystem I cyclic electron transfer in Synechocystis PCC6803 relies on binding of ferredoxin: NADP+ reductase to the thylakoid membranes via its CpcD phycobilisome-linker homologous N-terminal domain. Biochim. Biophys. Acta Bioenerget. 1457 129 – 144 . 10.1016/s0005-2728(00)00072-4 

  62. Varman A. M. Xiao Y. Pakrasi H. B. Tang Y. J. ( 2013 ). Metabolic engineering of Synechocystis sp. strain PCC 6803 for isobutanol production. Appl. Environ. Microbiol. 79 908 – 914 . 23183979 

  63. Vavitsas K. Rue E. O. Stefansdottir L. K. Gnanasekaran T. Blennow A. Crocoll C. ( 2017 ). Responses of Synechocystis sp. PCC 6803 to heterologous biosynthetic pathways. Microb. Cell Fact. 16 : 140 . 10.1186/s12934-017-0757-y 28806958 

  64. Waditee R. Hibino T. Nakamura T. Incharoensakdi A. Takabe T. ( 2002 ). Overexpression of a Na + /H + antiporter confers salt tolerance on a freshwater cyanobacterium, making it capable of growth in sea water. Proc. Natl. Acad. Sci. U.S.A. 99 4109 – 4114 . 10.1073/pnas.052576899 11891307 

  65. Walker B. J. Abeel T. Shea T. Priest M. Abouelliel A. Sakthikumar S. ( 2014 ). Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 9 : e112963 . 10.1371/journal.pone.0112963 25409509 

  66. Watanabe M. Semchonok D. A. Webber-Birungi M. T. Ehira S. Kondo K. Narikawa R. ( 2014 ). Attachment of phycobilisomes in an antenna-photosystem I supercomplex of cyanobacteria. Proc. Natl. Acad. Sci. U.S.A. 111 2512 – 2517 . 10.1073/pnas.1320599111 24550276 

  67. Xie C. Mao X. Huang J. Ding Y. Wu J. Dong S. ( 2011 ). KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res. 39 W316 – W322 . 10.1093/nar/gkr483 21715386 

  68. Yang W. Wang F. Liu L. N. Sui N. ( 2020 ). Responses of membranes and the photosynthetic apparatus to salt stress in cyanobacteria. Front. Plant Sci. 11 : 713 . 10.3389/fpls.2020.00713 32582247 

  69. Zhao Y. Wu J. Yang J. Sun S. Xiao J. Yu J. ( 2012 ). PGAP: pan-genomes analysis pipeline. Bioinformatics 28 416 – 418 . 22130594 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로