$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Energy Trading among Power Grid and Renewable Energy Sources: A Dynamic Pricing and Demand Scheme for Profit Maximization 원문보기

Sensors, v.21 no.17, 2021년, pp.5819 -   

Yoo, Yoon-Sik (Intelligent Convergence Research Laboratory, Electronics and Telecommunications Research Institute (ETRI), Daejeon 34129, Korea) ,  Jeon, Seung Hyun (midasyoo@etri.re.kr (Y.-S.Y.)) ,  Newaz, S. H. Shah (ilwoo@etri.re.kr (I.-W.L.)) ,  Lee, Il-Woo (School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea) ,  Choi, Jun Kyun (jkchoi59@kaist.edu)

Abstract AI-Helper 아이콘AI-Helper

With the technical growth and the reduction of deployment cost for distributed energy resources (DERs), such as solar photovoltaic (PV), energy trading has been recently encouraged to energy consumers, which can sell energy from their own energy storage system (ESS). Meanwhile, due to the unpreceden...

Keyword

참고문헌 (41)

  1. 1. Funicello-Paul L. Global New Capacity Deployments of Distributed Energy Resources Are Outpacing the Deployment of New Centralized Generation Capacity Available online: https://guidehouseinsights.com/news-and-views/global-new-capacity-deployments-of-distributed-energy-resources-are-outpacing-the-deployment-of-new (accessed on 13 April 2020) 

  2. 2. SonnenCommunity Available online: https://sonnengroup.com/sonnencommunity/ (accessed on 2 March 2020) 

  3. 3. Samadi P. Wong V.W.S. Schober R. Load Scheduling and Power Trading in Systems with High Penetration of Renewable Energy Resources IEEE Trans. Smart Grid 2016 7 1802 1812 10.1109/TSG.2015.2435708 

  4. 4. Chen T. Su W. Chen Y. An innovative localized retail electricity market based on energy broker and search theory Proceedings of the 2017 North American Power Symposium (NAPS) Morgantown, WV, USA 17–19 September 2017 1 5 10.1109/NAPS.2017.8107199 

  5. 5. Park S. Cho K. Kim S. Yoon G. Choi M.-I. Park S. Park S. Distributed Energy IoT-Based Real-Time Virtual Energy Prosumer Business Model for Distributed Power Resource Sensors 2021 21 4533 10.3390/s21134533 34282794 

  6. 6. Ko H. Rim K. Praça I. Influence of Features on Accuracy of Anomaly Detection for an Energy Trading System Sensors 2021 21 4237 10.3390/s21124237 34205584 

  7. 7. Xuan P. Lesser V. Multi-agent policies: from centralized ones to decentralized ones Proceedings of the First International Joint Conference on Autonomous Agents and Multi-Agent Systems: Part 3 (AAMAS ’02) Bologna, Italy 15–19 July 2002 1098 1105 10.1145/545056.545078 

  8. 8. Greer M. Electricity Marginal Cost Pricing Applications in Eliciting Demand Responses Elsevier Amsterdam, The Netherlands 2012 

  9. 9. Srinivasan D. Rajgarhia S. Radhakrishnan B.M. Game-Theory based dynamic pricing strategies for demand side management in smart grids Energy 2017 126 132 143 10.1016/j.energy.2016.11.142 

  10. 10. Mihaylov M. Jurado S. Avellana N. Moffaert K.V. de Abril I.M. Nowé A. NRGcoin: Virtual currency for trading of renewable energy in smart grids Proceedings of the 11th International Conference on the European Energy Market (EEM14) Krakow, Poland 28–30 May 2014 1 6 

  11. 11. Holt E. Sumner J. Bird L. The Role of Renewable Energy Certificates in Developing New Renewable Energy Projects National Renewable Energy Laboratory Golden, CO, USA 2011 

  12. 12. Hulshof D. Jepma C. Mulder M. Performance of markets for European renewable energy certificates Energy Policy 2017 128 697 710 10.1016/j.enpol.2019.01.051 

  13. 13. Bu S. Yu F.R. Liu P.X. Dynamic pricing for demand-side management in the smart grid Proceedings of the 2011 IEEE Online Conference on Green Communications Piscataway, NJ, USA 26–29 September 2011 47 51 

  14. 14. Temple W.G. Ma R.T.B. Monotonic Marginal Pricing: Demand Response with Price Certainty SIGMETRICS Perform. Eval. Rev. 2014 41 65 70 10.1145/2567529.2567551 

  15. 15. Jeon S.H. Lee J. Choi J.K. A Distributed Power Allocation Scheme for Base Stations Powered by Retailers with Heterogeneous Renewable Energy Sources ETRI J. 2016 38 746 756 10.4218/etrij.16.0115.0993 

  16. 16. Tang Q. Yang K. Zhou D. Luo Y. Yu F. A Real-Time Dynamic Pricing Algorithm for Smart Grid With Unstable Energy Providers and Malicious Users IEEE Internet Things J. 2016 3 554 562 10.1109/JIOT.2015.2452960 

  17. 17. Jia L. Tong L. Dynamic Pricing and Distributed Energy Management for Demand Response IEEE Trans. Smart Grid 2016 7 1128 1136 10.1109/TSG.2016.2515641 

  18. 18. Javed H.T. Beg M.O. Mujtaba H. Majeed H. Asim M. Fairness in Real-Time Energy Pricing for Smart Grid Using Unsupervised Learning Comput. J. 2019 62 414 429 10.1093/comjnl/bxy071 

  19. 19. Kaygusuz A. Closed loop elastic demand control by dynamic energy pricing in smart grids Energy 2019 176 596 603 10.1016/j.energy.2019.04.036 

  20. 20. Damien P. Fuentes-García R. Mena R.H. Zarnikau J. mpacts of day-ahead versus real-time market prices on wholesale electricity demand in Texas Energy Econ. 2019 81 259 272 10.1016/j.eneco.2019.04.008 

  21. 21. Anees A. Dillon T. Wallis S. Chen Y.-P.P. Optimization of day-ahead and real-time prices for smart home community Int. J. Electr. Power Energy Syst. 2021 124 106403 10.1016/j.ijepes.2020.106403 

  22. 22. Scarabaggio P. Grammatico S. Carli R. Dotoli M. Distributed Demand Side Management with Stochastic Wind Power Forecasting IEEE Trans. Control Syst. Technol. 2021 10.1109/TCST.2021.3056751 

  23. 23. Karimi H. Jadid S. Optimal energy management for multi-microgrid considering demand response programs: A stochastic multi-objective framework Energy 2020 195 10.1016/j.energy.2020.116992 

  24. 24. Wang L. Wang Z. Yang R. Intelligent Multiagent Control System for Energy and Comfort Management in Smart and Sustainable Buildings IEEE Trans. Smart Grid 2012 3 605 617 10.1109/TSG.2011.2178044 

  25. 25. Fahrioglu M. Alvarado F.L. Using utility information to calibrate customer demand management behavior models IEEE Trans. Power Syst. 2001 16 317 322 10.1109/59.918305 

  26. 26. Ferdous J. Mollah M.P. Razzaque M.A. Hassan M.M. Alamri A. Fortino G. Zhou M. Optimal Dynamic Pricing for Trading-Off User Utility and Operator Profit in Smart Grid IEEE Trans. Syst. Man Cybern. Syst. 2020 50 455 467 10.1109/TSMC.2017.2764442 

  27. 27. Samadi P. Mohsenian-Rad A. Schober R. Wong V.W.S. Jatskevich J. Optimal Real-Time Pricing Algorithm Based on Utility Maximization for Smart Grid Proceedings of the 2010 First IEEE International Conference on Smart Grid Communications Gaithersburg, MD, USA 4–6 October 2010 415 420 

  28. 28. Li N. Chen L. Low S.H. Optimal demand response based on utility maximization in power networks Proceedings of the 2011 IEEE Power And Energy Society General Meeting Detroit, MI, USA 24–28 July 2011 1 8 

  29. 29. Gillenwater M. Broekhoff D. Trexler M. Hyman J. Fowler R. Policing the voluntary carbon market Nat. Clim. Chang. 2001 1 85 87 10.1038/climate.2007.58 

  30. 30. William P. Fenton O’Creevy M. Nicholson N. Soane E. Knowing the Risks: Theory and Practice in Financial Market Trading Hum. Relat. 2001 54 887 910 10.1177/0018726701547005 

  31. 31. Climate Transparency Available online: https://www.climate-transparency.org/g20-climate-performance/g20report2017/country-profiles (accessed on 6 February 2020) 

  32. 32. Mohsenian-Rad A. Wong V.W.S. Jatskevich J. Schober R. Optimal and autonomous incentive-based energy consumption scheduling algorithm for smart grid Proceedings of the 2010 Innovative Smart Grid Technologies (ISGT) Gaithersburg, MD, USA 19–21 January 2010 1 6 

  33. 33. Boyd S. Vandenberghe L. Convex Optimization Cambridge University Press Cambridge, UK 2004 

  34. 34. Chiang M. Low S.H. Calderbank A.R. Doyle J.C. Layering as Optimization Decomposition: A Mathematical Theory of Network Architectures Proc. IEEE 2007 95 255 312 10.1109/JPROC.2006.887322 

  35. 35. Palomar D.P. Chiang M. A tutorial on decomposition methods for network utility maximization IEEE J. Sel. Areas Commun. 2006 24 1439 1451 10.1109/JSAC.2006.879350 

  36. 36. Rosen J.B. The Gradient Projection Method for Nonlinear Programming. Part I. Linear Constraints J. Soc. Ind. Appl. Math. 1960 8 181 217 10.1137/0108011 

  37. 37. Solar Battery Storage Comparison Table Available online: https://www.solarquotes.com.au/battery-storage/comparison-table/ (accessed on 2 March 2021) 

  38. 38. Han J. Jeong J. Lee I. Kim S. Low-cost monitoring of photovoltaic systems at panel level in residential homes based on power line communication IEEE Trans. Consum. Electron. 2017 63 435 441 10.1109/TCE.2017.015074 

  39. 39. Han J. Choi C. Park W. Lee I. Kim S. PLC-based photovoltaic system management for smart home energy management system IEEE Trans. Consum. Electron. 2014 60 184 189 10.1109/TCE.2014.6851992 

  40. 40. Power Data Available online: http://www.ieso.ca (accessed on 21 April 2020) 

  41. 41. Lee H. Ryu J.J. Kim C. Park Y. Kim M. The Growth Explorer: ESS—Korea at the Forefront of ESS Market Mirae Asset Daewoo Co. Seoul, Korea 2018 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로