최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Sensors, v.21 no.17, 2021년, pp.5819 -
Yoo, Yoon-Sik (Intelligent Convergence Research Laboratory, Electronics and Telecommunications Research Institute (ETRI), Daejeon 34129, Korea) , Jeon, Seung Hyun (midasyoo@etri.re.kr (Y.-S.Y.)) , Newaz, S. H. Shah (ilwoo@etri.re.kr (I.-W.L.)) , Lee, Il-Woo (School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea) , Choi, Jun Kyun (jkchoi59@kaist.edu)
With the technical growth and the reduction of deployment cost for distributed energy resources (DERs), such as solar photovoltaic (PV), energy trading has been recently encouraged to energy consumers, which can sell energy from their own energy storage system (ESS). Meanwhile, due to the unpreceden...
1. Funicello-Paul L. Global New Capacity Deployments of Distributed Energy Resources Are Outpacing the Deployment of New Centralized Generation Capacity Available online: https://guidehouseinsights.com/news-and-views/global-new-capacity-deployments-of-distributed-energy-resources-are-outpacing-the-deployment-of-new (accessed on 13 April 2020)
2. SonnenCommunity Available online: https://sonnengroup.com/sonnencommunity/ (accessed on 2 March 2020)
3. Samadi P. Wong V.W.S. Schober R. Load Scheduling and Power Trading in Systems with High Penetration of Renewable Energy Resources IEEE Trans. Smart Grid 2016 7 1802 1812 10.1109/TSG.2015.2435708
5. Park S. Cho K. Kim S. Yoon G. Choi M.-I. Park S. Park S. Distributed Energy IoT-Based Real-Time Virtual Energy Prosumer Business Model for Distributed Power Resource Sensors 2021 21 4533 10.3390/s21134533 34282794
6. Ko H. Rim K. Praça I. Influence of Features on Accuracy of Anomaly Detection for an Energy Trading System Sensors 2021 21 4237 10.3390/s21124237 34205584
8. Greer M. Electricity Marginal Cost Pricing Applications in Eliciting Demand Responses Elsevier Amsterdam, The Netherlands 2012
9. Srinivasan D. Rajgarhia S. Radhakrishnan B.M. Game-Theory based dynamic pricing strategies for demand side management in smart grids Energy 2017 126 132 143 10.1016/j.energy.2016.11.142
10. Mihaylov M. Jurado S. Avellana N. Moffaert K.V. de Abril I.M. Nowé A. NRGcoin: Virtual currency for trading of renewable energy in smart grids Proceedings of the 11th International Conference on the European Energy Market (EEM14) Krakow, Poland 28–30 May 2014 1 6
11. Holt E. Sumner J. Bird L. The Role of Renewable Energy Certificates in Developing New Renewable Energy Projects National Renewable Energy Laboratory Golden, CO, USA 2011
12. Hulshof D. Jepma C. Mulder M. Performance of markets for European renewable energy certificates Energy Policy 2017 128 697 710 10.1016/j.enpol.2019.01.051
13. Bu S. Yu F.R. Liu P.X. Dynamic pricing for demand-side management in the smart grid Proceedings of the 2011 IEEE Online Conference on Green Communications Piscataway, NJ, USA 26–29 September 2011 47 51
14. Temple W.G. Ma R.T.B. Monotonic Marginal Pricing: Demand Response with Price Certainty SIGMETRICS Perform. Eval. Rev. 2014 41 65 70 10.1145/2567529.2567551
16. Tang Q. Yang K. Zhou D. Luo Y. Yu F. A Real-Time Dynamic Pricing Algorithm for Smart Grid With Unstable Energy Providers and Malicious Users IEEE Internet Things J. 2016 3 554 562 10.1109/JIOT.2015.2452960
17. Jia L. Tong L. Dynamic Pricing and Distributed Energy Management for Demand Response IEEE Trans. Smart Grid 2016 7 1128 1136 10.1109/TSG.2016.2515641
18. Javed H.T. Beg M.O. Mujtaba H. Majeed H. Asim M. Fairness in Real-Time Energy Pricing for Smart Grid Using Unsupervised Learning Comput. J. 2019 62 414 429 10.1093/comjnl/bxy071
19. Kaygusuz A. Closed loop elastic demand control by dynamic energy pricing in smart grids Energy 2019 176 596 603 10.1016/j.energy.2019.04.036
20. Damien P. Fuentes-García R. Mena R.H. Zarnikau J. mpacts of day-ahead versus real-time market prices on wholesale electricity demand in Texas Energy Econ. 2019 81 259 272 10.1016/j.eneco.2019.04.008
21. Anees A. Dillon T. Wallis S. Chen Y.-P.P. Optimization of day-ahead and real-time prices for smart home community Int. J. Electr. Power Energy Syst. 2021 124 106403 10.1016/j.ijepes.2020.106403
22. Scarabaggio P. Grammatico S. Carli R. Dotoli M. Distributed Demand Side Management with Stochastic Wind Power Forecasting IEEE Trans. Control Syst. Technol. 2021 10.1109/TCST.2021.3056751
23. Karimi H. Jadid S. Optimal energy management for multi-microgrid considering demand response programs: A stochastic multi-objective framework Energy 2020 195 10.1016/j.energy.2020.116992
24. Wang L. Wang Z. Yang R. Intelligent Multiagent Control System for Energy and Comfort Management in Smart and Sustainable Buildings IEEE Trans. Smart Grid 2012 3 605 617 10.1109/TSG.2011.2178044
25. Fahrioglu M. Alvarado F.L. Using utility information to calibrate customer demand management behavior models IEEE Trans. Power Syst. 2001 16 317 322 10.1109/59.918305
26. Ferdous J. Mollah M.P. Razzaque M.A. Hassan M.M. Alamri A. Fortino G. Zhou M. Optimal Dynamic Pricing for Trading-Off User Utility and Operator Profit in Smart Grid IEEE Trans. Syst. Man Cybern. Syst. 2020 50 455 467 10.1109/TSMC.2017.2764442
27. Samadi P. Mohsenian-Rad A. Schober R. Wong V.W.S. Jatskevich J. Optimal Real-Time Pricing Algorithm Based on Utility Maximization for Smart Grid Proceedings of the 2010 First IEEE International Conference on Smart Grid Communications Gaithersburg, MD, USA 4–6 October 2010 415 420
28. Li N. Chen L. Low S.H. Optimal demand response based on utility maximization in power networks Proceedings of the 2011 IEEE Power And Energy Society General Meeting Detroit, MI, USA 24–28 July 2011 1 8
29. Gillenwater M. Broekhoff D. Trexler M. Hyman J. Fowler R. Policing the voluntary carbon market Nat. Clim. Chang. 2001 1 85 87 10.1038/climate.2007.58
30. William P. Fenton O’Creevy M. Nicholson N. Soane E. Knowing the Risks: Theory and Practice in Financial Market Trading Hum. Relat. 2001 54 887 910 10.1177/0018726701547005
31. Climate Transparency Available online: https://www.climate-transparency.org/g20-climate-performance/g20report2017/country-profiles (accessed on 6 February 2020)
32. Mohsenian-Rad A. Wong V.W.S. Jatskevich J. Schober R. Optimal and autonomous incentive-based energy consumption scheduling algorithm for smart grid Proceedings of the 2010 Innovative Smart Grid Technologies (ISGT) Gaithersburg, MD, USA 19–21 January 2010 1 6
33. Boyd S. Vandenberghe L. Convex Optimization Cambridge University Press Cambridge, UK 2004
34. Chiang M. Low S.H. Calderbank A.R. Doyle J.C. Layering as Optimization Decomposition: A Mathematical Theory of Network Architectures Proc. IEEE 2007 95 255 312 10.1109/JPROC.2006.887322
35. Palomar D.P. Chiang M. A tutorial on decomposition methods for network utility maximization IEEE J. Sel. Areas Commun. 2006 24 1439 1451 10.1109/JSAC.2006.879350
36. Rosen J.B. The Gradient Projection Method for Nonlinear Programming. Part I. Linear Constraints J. Soc. Ind. Appl. Math. 1960 8 181 217 10.1137/0108011
37. Solar Battery Storage Comparison Table Available online: https://www.solarquotes.com.au/battery-storage/comparison-table/ (accessed on 2 March 2021)
38. Han J. Jeong J. Lee I. Kim S. Low-cost monitoring of photovoltaic systems at panel level in residential homes based on power line communication IEEE Trans. Consum. Electron. 2017 63 435 441 10.1109/TCE.2017.015074
39. Han J. Choi C. Park W. Lee I. Kim S. PLC-based photovoltaic system management for smart home energy management system IEEE Trans. Consum. Electron. 2014 60 184 189 10.1109/TCE.2014.6851992
40. Power Data Available online: http://www.ieso.ca (accessed on 21 April 2020)
41. Lee H. Ryu J.J. Kim C. Park Y. Kim M. The Growth Explorer: ESS—Korea at the Forefront of ESS Market Mirae Asset Daewoo Co. Seoul, Korea 2018
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.