$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Performance Metrics for Fluidic Soft Robot Rotational Actuators 원문보기

Frontiers in robotics and AI, v.8, 2021년, pp.632835 -   

Rupert, Levi ,  Saunders, Benjamin O. ,  Killpack, Marc D.

Abstract AI-Helper 아이콘AI-Helper

The field of soft robotics is continuing to grow as more researchers see the potential for robots that can safely interact in unmodeled, unstructured, and uncertain environments. However, in order for the design, integration, and control of soft robotic actuators to develop into a full engineering m...

주제어

참고문헌 (39)

  1. Agarwal G. Besuchet N. Audergon B. Paik J. ( 2016 ). Stretchable Materials for Robust Soft Actuators towards Assistive Wearable Devices . Sci. Rep. 6 , 34224 . 10.1038/srep34224 27670953 

  2. Albu-Schäffer A. Bicchi A. ( 2016 ). “ Actuators for Soft Robotics ,” in Springer Handbood of Robotics . Editors Siciliano B. Khatib O. ( Cham : Springer ), 499 – 530 . 10.1007/978-3-319-32552-1_21 

  3. Best C. M. Gillespie M. T. Hyatt P. Rupert L. Sherrod V. Killpack M. D. ( 2016 ). A New Soft Robot Control Method: Using Model Predictive Control for a Pneumatically Actuated Humanoid . IEEE Robot. Automat. Mag. 23 , 75 – 84 . 10.1109/mra.2016.2580591 

  4. Best C. M. Rupert L. Killpack M. D. ( 2020 ). Comparing Model-Based Control Methods for Simultaneous Stiffness and Position Control of Inflatable Soft Robots . Int. J. Robotics Res. 40 , 0278364920911960 . 10.1177/0278364920911960 

  5. Bodily D. M. Allen T. F. Killpack M. D. ( 2017 ). Multi-objective Design Optimization of a Soft, Pneumatic Robot . In 2017 IEEE International Conference on Robotics and Automation (ICRA) . IEEE , 1864 – 1871 . 10.1109/icra.2017.7989218 

  6. Clausius R. ( 1857 ). Ueber die Art der Bewegung, welche wir Wärme nennen . Ann. Phys. Chem. 176 , 353 – 380 . 10.1002/andp.18571760302 

  7. Daerden F. Lefeber D. ( 2002 ). Pneumatic Artificial Muscles: Actuators for Robotics and Automation . Eur. J. Mech. Environ. Eng. 47 , 11 – 21 . 

  8. Duggan T. Horowitz L. Ulug A. Baker E. Petersen K. ( 2019 ). Inchworm-inspired Locomotion in Untethered Soft Robots . in 2019 IEEE International Conference on Soft Robotics (RoboSoft) . IEEE . 10.1109/robosoft.2019.8722716 

  9. Galloway K. C. Becker K. P. Phillips B. Kirby J. Licht S. Tchernov D. ( 2016 ). Soft Robotic Grippers for Biological Sampling on Deep Reefs . Soft robotics 3 , 23 – 33 . 10.1089/soro.2015.0019 27625917 

  10. Garriga-Casanovas A. Collison I. Rodriguez y Baena F. ( 2018 ). Toward a Common Framework for the Design of Soft Robotic Manipulators with Fluidic Actuation . Soft robotics 5 , 622 – 649 . 10.1089/soro.2017.0105 30161015 

  11. Giannaccini M. E. Xiang C. Atyabi A. Theodoridis T. Nefti-Meziani S. Davis S. ( 2018 ). Novel Design of a Soft Lightweight Pneumatic Continuum Robot Arm with Decoupled Variable Stiffness and Positioning . Soft robotics 5 , 54 – 70 . 10.1089/soro.2016.0066 29412080 

  12. Gillespie M. T. Best C. M. Killpack M. D. ( 2016 ). Simultaneous Position and Stiffness Control for an Inflatable Soft Robot . in 2016 IEEE international conference on robotics and automation (ICRA) . IEEE , 1095 – 1101 . 10.1109/icra.2016.7487240 

  13. Godage I. S. Branson D. T. Guglielmino E. Caldwell D. G. ( 2012 ). Pneumatic Muscle Actuated Continuum Arms: Modelling and Experimental Assessment . in 2012 IEEE International Conference on Robotics and Automation . IEEE , 4980 – 4985 . 10.1109/icra.2012.6224949 

  14. Hannan M. W. Walker I. D. ( 2003 ). Kinematics and the Implementation of an Elephant's Trunk Manipulator and Other Continuum Style Robots . J. Robotic Syst. 20 , 45 – 63 . 10.1002/rob.10070 

  15. Hawkes E. W. Blumenschein L. H. Greer J. D. Okamura A. M. ( 2017 ). A Soft Robot that Navigates its Environment through Growth . Sci. Robot. 2 , eaan3028 . 10.1126/scirobotics.aan3028 33157883 

  16. Hines L. Petersen K. Lum G. Z. Sitti M. ( 2017 ). Soft Actuators for Small-Scale Robotics . Adv. Mater. 29 . 10.1002/adma.201603483 

  17. Hofer M. D’Andrea R. ( 2018 ). Design, Modeling and Control of a Soft Robotic Arm . in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) . IEEE , 1456 – 1463 . 10.1109/iros.2018.8594221 

  18. Holland D. P. Park E. J. Polygerinos P. Bennett G. J. Walsh C. J. ( 2014 ). The Soft Robotics Toolkit: Shared Resources for Research and Design . Soft Robotics 1 , 224 – 230 . 10.1089/soro.2014.0010 

  19. Hyatt P. Kraus D. Sherrod V. Rupert L. Day N. Killpack M. D. ( 2018 ). Configuration Estimation for Accurate Position Control of Large-Scale Soft Robots . IEEE/ASME Trans. Mechatronics 24 , 88 – 99 . 

  20. Jones B. A. Walker I. D. ( 2006 ). Kinematics for Multisection Continuum Robots . IEEE Trans. Robot. 22 , 43 – 55 . 10.1109/tro.2005.861458 

  21. Joshi S. Paik J. ( 2019 ). Multi-dof Force Characterization of Soft Actuators . IEEE Robot. Autom. Lett. 4 , 3679 – 3686 . 10.1109/lra.2019.2927936 

  22. Krause J. C. Ibrahim S. Raatz A. ( 2019 ). Evaluation Environment for Control Design of Soft Pneumatic Actuators . in Tagungsband des 4. Kongresses Montage Handhabung Industrieroboter . Springer , 74 – 83 . 10.1007/978-3-662-59317-2_8 

  23. Laschi C. Cianchetti M. Mazzolai B. Margheri L. Follador M. Dario P. ( 2012 ). Soft Robot Arm Inspired by the octopus . Adv. Robotics 26 , 709 – 727 . 10.1163/156855312x626343 

  24. Li S. Vogt D. M. Rus D. Wood R. J. ( 2017 ). Fluid-driven Origami-Inspired Artificial Muscles . Proc. Natl. Acad. Sci. USA 114 , 13132 – 13137 . 10.1073/pnas.1713450114 29180416 

  25. Marchese A. D. Komorowski K. Onal C. D. Rus D. ( 2014 ). Design and Control of a Soft and Continuously Deformable 2d Robotic Manipulation System . in 2014 IEEE international conference on robotics and automation (ICRA) . IEEE , 2189 – 2196 . 10.1109/icra.2014.6907161 

  26. Mihajlov M. Hubner M. Ivlev O. Graser A. ( 2006 ). Modeling and Control of Fluidic Robotic Joints with Natural Compliance . in 2006 IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control . IEEE , 2498 – 2503 . 10.1109/cca.2006.285861 

  27. Morzadec T. Marcha D. Duriez C. ( 2019 ). Toward Shape Optimization of Soft Robots . in 2019 2nd IEEE International Conference on Soft Robotics (RoboSoft), Seoul Korea . IEEE , 521 – 526 . 10.1109/robosoft.2019.8722822 

  28. Mosadegh B. Polygerinos P. Keplinger C. Wennstedt S. Shepherd R. F. Gupta U. ( 2014 ). Pneumatic Networks for Soft Robotics that Actuate Rapidly . Adv. Funct. Mater. 24 , 2163 – 2170 . 10.1002/adfm.201303288 

  29. Ninjatek ( 2019 ). Ninjaflex® 3d printing filament, available at: https://ninjatek.com/wp-content/uploads/2019/10/ninjaflex-tds.pdf . 

  30. Ohta P. Valle L. King J. Low K. Yi J. Atkeson C. G. ( 2018 ). Design of a Lightweight Soft Robotic Arm Using Pneumatic Artificial Muscles and Inflatable Sleeves . Soft Robotics 5 , 204 – 215 . 10.1089/soro.2017.0044 29648951 

  31. Pahl G. Beitz W. ( 2013 ). Engineering Design: A Systematic Approach . Springer Science & Business Media . 

  32. robotics-worldwide mailing list ( 2021 ). available at: http://duerer.usc.edu/mailman/listinfo.cgi/robotics-worldwide . 

  33. Rolf M. Steil J. J. ( 2012 ). Constant Curvature Continuum Kinematics as Fast Approximate Model for the Bionic Handling Assistant . in 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems . IEEE , 3440 – 3446 . 10.1109/iros.2012.6385596 

  34. Rus D. Tolley M. T. ( 2015 ). Design, Fabrication and Control of Soft Robots . Nature 521 , 467 – 475 . 10.1038/nature14543 26017446 

  35. SainSmart ( 2019 ). Tpu Flexible Filament . available at: https://www.sainsmart.com/products/all-colors-tpu-flexible-filament-1-75mm-0-8kg-1-76lb . 

  36. Sanan S. Ornstein M. H. Atkeson C. G. ( 2011 ). Physical Human Interaction for an Inflatable Manipulator . in Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE . IEEE , 7401 – 7404 . 10.1109/IEMBS.2011.6091723 

  37. Schulte H. Jr ( 1961 ). The Characteristics of the Mckibben Artificial Muscle - the Application of External Power in Prosthetics and Orthotics . Washington DC : National Academy of Sciences-National Research Council , 94 – 115 . 

  38. Shepherd R. F. Ilievski F. Choi W. Morin S. A. Stokes A. A. Mazzeo A. D. ( 2011 ). Multigait Soft Robot . Proc. Natl. Acad. Sci. 108 , 20400 – 20403 . 10.1073/pnas.1116564108 22123978 

  39. van der Veen S. Bordeleau M. Pidcoe P. France C. Thomas J. ( 2019 ). Agreement Analysis between Vive and Vicon Systems to Monitor Lumbar Postural Changes . Sensors 19 , 3632 . 10.3390/s19173632 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로