$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Efficient synthesis of high areal capacity SigraphiteSiC composite anode material via one-step electro-deoxidation

Journal of alloys and compounds, v.896, 2022년, pp.163010 -   

Choi, Jong-Hyeok (Department of Chemical Engineering, Chungbuk National University) ,  Choi, Sunghun (Gwangju Bio) ,  Cho, Jung Sang (Department of Engineering Chemistry, Chungbuk National University) ,  Kim, Hyun-Kyung (Department of Materials Science and Engineering, Kangwon National University) ,  Jeong, Sang Mun (Department of Chemical Engineering, Chungbuk National University)

Abstract AI-Helper 아이콘AI-Helper

Abstract Although Si is a promising anode material for lithium-ion batteries, scalable synthesis of Si anodes with high cyclability and low swelling remains a significant challenge. Herein, we describe the electrochemical fabrication of a Si@graphite@SiC composite anode from a SiO2/graphite mixture...

주제어

참고문헌 (45)

  1. Science Dahn 270 590 1995 10.1126/science.270.5236.590 Mechanisms for lithium insertion in carbonaceous materials 

  2. Nano Energy Javed 77 2020 10.1016/j.nanoen.2020.105276 Achieving high-energy density and superior cyclic stability in flexible and lightweight pseudocapacitor through synergic effects of binder-free CoGa2O4 2D-hexagonal nanoplates 

  3. Nano Energy Javed 70 2020 10.1016/j.nanoen.2020.104573 2D V2O5 nanosheets as a binder-free high-energy cathode for ultrafast aqueous and flexible Zn-ion batteries 

  4. J. Mater. Chem. A Javed 7 946 2019 10.1039/C8TA08816K An ultra-high energy density flexible asymmetric supercapacitor based on hierarchical fabric decorated with 2D bimetallic oxide nanosheets and MOF-derived porous carbon polyhedral 

  5. J. Power Sources Javed 285 63 2015 10.1016/j.jpowsour.2015.03.079 High performance solid state flexible supercapacitor based on molybdenum sulfide hierarchical nanospheres 

  6. Adv. Mater. McDowell 25 4966 2013 10.1002/adma.201301795 25th anniversary article: understanding the lithiation of silicon and other alloying anodes for lithium‐ion batteries 

  7. Electrochem. Solid-State Lett. Beaulieu 4 A137 2001 10.1149/1.1388178 Colossal reversible volume changes in lithium alloys 

  8. J. Power Sources Kasavajjula 163 1003 2007 10.1016/j.jpowsour.2006.09.084 Nano-and bulk-silicon-based insertion anodes for lithium-ion secondary cells 

  9. Nat. Nanotechnol. Chan 3 31 2008 10.1038/nnano.2007.411 High-performance lithium battery anodes using silicon nanowires 

  10. Energy Environ. Sci. Gauthier 6 2145 2013 10.1039/c3ee41318g A low-cost and high performance ball-milled Si-based negative electrode for high-energy Li-ion batteries 

  11. Nano Lett. Ge 12 2318 2012 10.1021/nl300206e Porous doped silicon nanowires for lithium ion battery anode with long cycle life 

  12. Nano Lett. Yao 11 2949 2011 10.1021/nl201470j Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life 

  13. ChemSusChem Park 9 2754 2016 10.1002/cssc.201600798 Si/SiOx-conductive polymer core-shell nanospheres with an improved conducting path preservation for lithium-ion battery 

  14. Nat. Nanotechnol. Liu 9 187 2014 10.1038/nnano.2014.6 A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes 

  15. Energy Environ. Sci. Lin 8 2371 2015 10.1039/C5EE01363A A high tap density secondary silicon particle anode fabricated by scalable mechanical pressing for lithium-ion batteries 

  16. ACS Nano Li 13 2624 2019 Nano/microstructured silicon-graphite composite anode for high-energy-density Li-ion battery 

  17. J. Hazard. Mater. Choi 399 2020 10.1016/j.jhazmat.2020.122949 Facile and scalable synthesis of silicon nanowires from waste rice husk silica by the molten salt process 

  18. Adv. Energy Mater. Luo 7 2017 10.1002/aenm.201701083 Surface and interface engineering of silicon‐based anode materials for lithium‐ion batteries 

  19. ACS Nano Cui 4 3671 2010 10.1021/nn100619m Light-weight free-standing carbon nanotube-silicon films for anodes of lithium ion batteries 

  20. Nat. Commun. Son 6 1 2015 10.1038/ncomms8393 Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density 

  21. Nano Lett. Hwang 12 802 2012 10.1021/nl203817r Electrospun core-shell fibers for robust silicon nanoparticle-based lithium ion battery anodes 

  22. Sci. Rep. Kasukabe 7 42734 2017 10.1038/srep42734 Beads-milling of waste Si sawdust into high-performance nanoflakes for lithium-ion batteries 

  23. Nano Lett. Choi 14 7120 2014 10.1021/nl503620z Scalable fracture-free SiOC glass coating for robust silicon nanoparticle anodes in lithium secondary batteries 

  24. Chem. Mater. Park 27 457 2015 10.1021/cm5034244 Spray-assisted deep-frying process for the in situ spherical assembly of graphene for energy-storage devices 

  25. ChemElectroChem Xu 7 2889 2020 10.1002/celc.202000827 Embedding silicon in pinecone-derived porous carbon as a high-performance anode for lithium-ion batteries 

  26. Nano Lett. Kwon 20 625 2020 10.1021/acs.nanolett.9b04395 Nano/microstructured silicon-carbon hybrid composite particles fabricated with corn starch biowaste as anode materials for Li-ion batteries 

  27. J. Mater. Chem. A Kamali 5 19126 2017 10.1039/C7TA04335J Large scale green production of ultra-high capacity anode consisting of graphene encapsulated silicon nanoparticles 

  28. Nano Energy Zhang 25 120 2016 10.1016/j.nanoen.2016.04.043 Rice husk-derived hierarchical silicon/nitrogen-doped carbon/carbon nanotube spheres as low-cost and high-capacity anodes for lithium-ion batteries 

  29. J. Energy Chem. Shen 27 1067 2018 10.1016/j.jechem.2017.12.012 Research progress on silicon/carbon composite anode materials for lithium-ion battery 

  30. Trans. Indian Inst. Met. Mohandas 57 579 2004 FFC Cambridge process and removal of oxygen from metal-oxygen systems by molten salt electrolysis: an overview 

  31. Nat. Mater. Nohira 2 397 2003 10.1038/nmat900 Pinpoint and bulk electrochemical reduction of insulating silicon dioxide to silicon 

  32. S. Lu, J. Yang, X. Wang, H. Ding, Z. Gao , (China Automotive Battery Research Institute Co., Ltd.), Nano Silicon-carbon Composite Material and Preparation Method Thereof, US Pat. 9666863, 2017. 

  33. Sci. Rep. Zou 7 9978 2017 10.1038/s41598-017-10587-5 Facile electrosynthesis of silicon carbide nanowires from silica/carbon precursors in molten salt 

  34. Energy Storage Mater. Vishnu 26 234 2020 10.1016/j.ensm.2019.12.041 Solid state electrochemically synthesised β-SiC nanowires as the anode material in lithium ion batteries 

  35. J. Electrochem. Soc. Vishnu 165 D731 2018 10.1149/2.0591814jes Direct electrochemical preparation of nanostructured silicon carbide and its nitridation behavior 

  36. Batter. Supercaps Zhao 2 1007 2019 10.1002/batt.201900091 A natural transporter of silicon and carbon: conversion of rice husks to silicon carbide or carbon-silicon hybrid for lithium-ion battery anodes via a molten salt electrolysis approach 

  37. Mater. Lett. Yu 273 2020 10.1016/j.matlet.2020.127946 In-situ growth of silicon nanowires on graphite by molten salt electrolysis for high performance lithium-ion batteries 

  38. J. Mater. Sci. Hu 55 10155 2020 10.1007/s10853-020-04756-7 The preparation of graphite/silicon@ carbon composites for lithium-ion batteries through molten salts electrolysis 

  39. J. Mater. Chem. A Wang 8 4836 2020 10.1039/C9TA12923E PVD customized 2D porous amorphous silicon nanoflakes percolated with carbon nanotubes for high areal capacity lithium ion batteries 

  40. ACS Appl. Energy Mater. Furquan 3 12613 2020 10.1021/acsaem.0c02523 Mechanical and electrochemical stability improvement of sic-reinforced silicon-based composite anode for Li-ion batteries 

  41. J. Ind. Eng. Chem. Ji 24 259 2015 10.1016/j.jiec.2014.09.039 Preparation of NdNi5 using an electrochemical reduction of a NiO-Nd2O3 mixture in molten LiCl 

  42. Ceram. Int. Chandrasekar 42 8900 2016 10.1016/j.ceramint.2016.02.145 Role of SiOx on the photoluminescence properties of β-SiC 

  43. J. Electrochem. Soc. Yasuda 152 D69 2005 10.1149/1.1864453 Mechanism of direct electrolytic reduction of solid SiO2 to Si in molten CaCl2 

  44. J. Power Sources Kim 130 275 2004 10.1016/j.jpowsour.2003.12.014 Si-SiC nanocomposite anodes synthesized using high-energy mechanical milling 

  45. Science Choi 357 279 2017 10.1126/science.aal4373 Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries 

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로