$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Torque Measurement and Control for Electric-Assisted Bike Considering Different External Load Conditions 원문보기

Sensors, v.23 no.10, 2023년, pp.4657 -   

Ho, Ping-Jui (Department of Mechanical Engineering, National Taiwan University, Taipei 106319, Taiwan) ,  Yi, Chen-Pei (d09522012@ntu.edu.tw (P.-J.H.)) ,  Lin, Yi-Jen (f09522808@ntu.edu.tw (C.-P.Y.)) ,  Chung, Wei-Der (f08522816@ntu.edu.tw (Y.-J.L.)) ,  Chou, Po-Huan (Department of Mechanical Engineering, National Taiwan University, Taipei 106319, Taiwan) ,  Yang, Shih-Chin (d09522012@ntu.edu.tw (P.-J.H.))

Abstract AI-Helper 아이콘AI-Helper

This paper proposes a novel torque measurement and control technique for cycling-assisted electric bikes (E-bikes) considering various external load conditions. For assisted E-bikes, the electromagnetic torque from the permanent magnet (PM) motor can be controlled to reduce the pedaling torque gener...

주제어

참고문헌 (48)

  1. 1. Lee J. Jiang J. Sun Y. Design and simulation of control systems for electric-assist bikes Proceedings of the 2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA) Hefei, China 5–7 June 2016 1736 1740 

  2. 2. Hunt K.J. Stone B. Negard N.O. Schauer T. Fraser M.H. Cathcart A.J. Ferrario C. Ward S.A. Grant S. Control strategies for integration of electric motor assist and functional electrical stimulation in paraplegic cycling: Utility for exercise testing and mobile cycling IEEE Trans. Neural Syst. Rehabil. Eng. 2004 12 89 101 10.1109/TNSRE.2003.819955 15068192 

  3. 3. Lozinski J. Heidary S.H. Brandon S.C.E. Komeili A. An Adaptive Pedaling Assistive Device for Asymmetric Torque Assistant in Cycling Sensors 2023 23 2846 10.3390/s23052846 36905050 

  4. 4. Zaghari B. Stuikys A. Weddell A.S. Beeby S. Efficient Energy Conversion in Electrically Assisted Bicycles Using a Switched Reluctance Machine Under Torque Control IEEE Access 2020 8 202401 202411 10.1109/ACCESS.2020.3036373 

  5. 5. Palmieri G. Tiboni M. Legnani G. Analysis of the Upper Limitation of the Most Convenient Cadence Range in Cycling Using an Equivalent Moment Based Cost Function Mathematics 2020 8 1947 10.3390/math8111947 

  6. 6. Balbinot A. Milani C. Nascimento J.D.S.B. A New Crank Arm-Based Load Cell for the 3D Analysis of the Force Applied by a Cyclist Sensors 2014 14 22921 22939 10.3390/s141222921 25479325 

  7. 7. Böhm H. Siebert S. Walsh M. Effects of short-term training using SmartCranks on cycle work distribution and power output during cycling Eur. J. Appl. Physiol. 2008 103 225 232 10.1007/s00421-008-0692-z 18273633 

  8. 8. Turpin N.A. Watier B. Cycling Biomechanics and Its Relationship to Performance Appl. Sci. 2020 10 4112 10.3390/app10124112 

  9. 9. Caldwell G.E. Li L. McCole S.D. Hagberg J.M. Pedal and Crank Kinetics in Uphill Cycling J. Appl. Biomech. 1998 14 245 259 10.1123/jab.14.3.245 28121253 

  10. 10. Bini R. Hume P. Croft J. Kilding A. Pedal force effectiveness in cycling: A review of constraints and training effects J. Sci. Cycl. 2013 2 11 24 

  11. 11. Höchtl F. Böhm H. Senner V. Prediction of energy efficient pedal forces in cycling using musculoskeletal simulation models Procedia Eng. 2010 2 3211 3215 10.1016/j.proeng.2010.04.134 

  12. 12. Tang Y. Wang D. Wang Y. Yin K. Zhang C. Zou L. Liu Y. Do Surface Slope and Posture Influence Lower Extremity Joint Kinetics during Cycling? Int. J. Environ. Res. Public Health 2020 17 2846 10.3390/ijerph17082846 32326216 

  13. 13. Martín-Sosa E. Chaves V. Alvarado I. Mayo J. Ojeda J. Design and Validation of a Device Attached to a Conventional Bicycle to Measure the Three-Dimensional Forces Applied to a Pedal Sensors 2021 21 4590 10.3390/s21134590 34283156 

  14. 14. Mandriota R. Fabbri S. Nienhaus M. Grasso E. Sensorless Pedalling Torque Estimation Based on Motor Load Torque Observation for Electrically Assisted Bicycles Actuators 2021 10 88 10.3390/act10050088 

  15. 15. Avina-Bravo E.G. Cassirame J. Escriba C. Acco P. Fourniols J.-Y. Soto-Romero G. Smart Electrically Assisted Bicycles as Health Monitoring Systems: A Review Sensors 2022 22 468 10.3390/s22020468 35062429 

  16. 16. Evans S.A. James D.A. Rowlands D. Lee J.B. Evaluation of Accelerometer-Derived Data in the Context of Cycling Cadence and Saddle Height Changes in Triathlon Sensors 2021 21 871 10.3390/s21030871 33525481 

  17. 17. Murgano E. Caponetto R. Pappalardo G. Cafiso S.D. Severino A. A Novel Acceleration Signal Processing Procedure for Cycling Safety Assessment Sensors 2021 21 4183 10.3390/s21124183 34207148 

  18. 18. Hollaus B. Volmer J.C. Fleischmann T. Cadence Detection in Road Cycling Using Saddle Tube Motion and Machine Learning Sensors 2022 22 6140 10.3390/s22166140 36015900 

  19. 19. Pérez-Zuriaga A.M. Llopis-Castelló D. Just-Martínez V. Fonseca-Cabrera A.S. Alonso-Troyano C. García A. Implementation of a Low-Cost Data Acquisition System on an E-Scooter for Micromobility Research Sensors 2022 22 8215 10.3390/s22218215 36365913 

  20. 20. Bruno S. Vita L. Loprencipe G. Development of a GIS-Based Methodology for the Management of Stone Pavements Using Low-Cost Sensors Sensors 2022 22 6560 10.3390/s22176560 36081019 

  21. 21. Pan L. Xia Y. Xing L. Song Z. Xu Y. Exploring Use Acceptance of Electric Bicycle-Sharing Systems: An Empirical Study Based on PLS-SEM Analysis Sensors 2022 22 7057 10.3390/s22187057 36146406 

  22. 22. Stilo L. Lugo H. Velandia D.S. Conway P.P. West A.A. Personalised Controller Strategies for Next Generation Intelligent Adaptive Electric Bicycles IEEE Trans. Intell. Transp. Syst. 2021 22 7814 7825 10.1109/TITS.2020.3009400 

  23. 23. De La Iglesia D.H. De Paz J.F. Villarrubia González G. Barriuso A.L. Bajo J. Corchado J.M. Increasing the Intensity over Time of an Electric-Assist Bike Based on the User and Route: The Bike Becomes the Gym Sensors 2018 18 220 10.3390/s18010220 29342900 

  24. 24. Meyer D. Körber M. Senner V. Tomizuka M. Regulating the Heart Rate of Human–Electric Hybrid Vehicle Riders Under Energy Consumption Constraints Using an Optimal Control Approach IEEE Trans. Control. Syst. Technol. 2019 27 2125 2138 10.1109/TCST.2018.2852743 

  25. 25. Muetze A. Tan Y.C. Electric bicycles—A performance evaluation IEEE Ind. Appl. Mag. 2007 13 12 21 10.1109/MIA.2007.4283505 

  26. 26. De La Iglesia D.H. Villarrubia G. De Paz J.F. Bajo J. Multi-Sensor Information Fusion for Optimizing Electric Bicycle Routes Using a Swarm Intelligence Algorithm Sensors 2017 17 2501 10.3390/s17112501 29088087 

  27. 27. Allebosch G. Van den Bossche S. Veelaert P. Philips W. Camera-Based System for Drafting Detection While Cycling Sensors 2020 20 1241 10.3390/s20051241 32106442 

  28. 28. Gómez-Suárez J. Arroyo P. Alfonso R. Suárez J.I. Pinilla-Gil E. Lozano J. A Novel Bike-Mounted Sensing Device with Cloud Connectivity for Dynamic Air-Quality Monitoring by Urban Cyclists Sensors 2022 22 1272 10.3390/s22031272 35162017 

  29. 29. Królak A. Wiktorski T. Bjørkavoll-Bergseth M.F. Ørn S. Artifact Correction in Short-Term HRV during Strenuous Physical Exercise Sensors 2020 20 6372 10.3390/s20216372 33171676 

  30. 30. Avina-Bravo E.G. Sodre Ferreira de Sousa F.A. Escriba C. Acco P. Giraud F. Fourniols J.-Y. Soto-Romero G. Design and Validity of a Smart Healthcare and Control System for Electric Bikes Sensors 2023 23 4079 10.3390/s23084079 37112419 

  31. 31. Shahbakhti M. Hakimi N. Horschig J.M. Floor-Westerdijk M. Claassen J. Colier W.N.J.M. Estimation of Respiratory Rate during Biking with a Single Sensor Functional Near-Infrared Spectroscopy (fNIRS) System Sensors 2023 23 3632 10.3390/s23073632 37050692 

  32. 32. Li X. Liu Z. Gao X. Zhang J. Bicycling Phase Recognition for Lower Limb Amputees Using Support Vector Machine Optimized by Particle Swarm Optimization Sensors 2020 20 6533 10.3390/s20226533 33203169 

  33. 33. Liu S.-H. Lin C.-B. Chen Y. Chen W. Huang T.-S. Hsu C.-Y. An EMG Patch for the Real-Time Monitoring of Muscle-Fatigue Conditions During Exercise Sensors 2019 19 3108 10.3390/s19143108 31337107 

  34. 34. Muyor J.M. Antequera-Vique J.A. Oliva-Lozano J.M. Arrabal-Campos F.M. Evaluation of Dynamic Spinal Morphology and Core Muscle Activation in Cyclists—A Comparison between Standing Posture and on the Bicycle Sensors 2022 22 9346 10.3390/s22239346 36502048 

  35. 35. Fonda B. Sarabon N. Biomechanics and Energetics of Uphill Cycling: A review Kinesiology 2012 44 5 17 

  36. 36. Corno M. Berretta D. Spagnol P. Savaresi S.M. Design, Control, and Validation of a Charge-Sustaining Parallel Hybrid Bicycle IEEE Trans. Control. Syst. Technol. 2016 24 817 829 10.1109/TCST.2015.2473821 

  37. 37. Yang Y. Yeo J. Priya S. Harvesting Energy from the Counterbalancing (Weaving) Movement in Bicycle Riding Sensors 2012 12 10248 10258 10.3390/s120810248 23112598 

  38. 38. Martirosyan A.V. Ilyushin Y.V. Afanaseva O.V. Development of a Distributed Mathematical Model and Control System for Reducing Pollution Risk in Mineral Water Aquifer Systems Water 2022 14 151 10.3390/w14020151 

  39. 39. Mohammadzaheri M. Chen L. Intelligent Predictive Control of a Model Helicopter’s Yaw Angle Asian J. Control. 2010 12 667 679 10.1002/asjc.243 

  40. 40. Chowdhury H. Alam F. Khan I. An Experimental Study of Bicycle Aerodynamics Int. J. Mech. Mater. Eng. 2011 6 269 274 

  41. 41. Engineering ToolBox. 2008. Rolling Resistance Available online: https://www.engineeringtoolbox.com/rolling-friction-resistance-d_1303.html (accessed on 24 March 2022) 

  42. 42. Roveri N. Pepe G. Mezzani F. Carcaterra A. Culla A. Milana S. OPTYRE—Real Time Estimation of Rolling Resistance for Intelligent Tyres Sensors 2019 19 5119 10.3390/s19235119 31766764 

  43. 43. Bojoi R. Lazzari M. Profumo F. Tenconi A. Digital field oriented control for dual three-phase induction motor drives Proceedings of the Conference Record of the 2002 IEEE Industry Applications Conference, 37th IAS Annual Meeting Pittsburgh, PA, USA 13–18 October 2002 Volume 2 818 825 

  44. 44. Mohammadzahri M. Khaleghifar A. Ghodsi M. Soltani P. AlSulti S. A Discrete Approach to Feedback Linearization, Yaw Control of an Unmanned Helicopter Unmanned Syst. 2023 11 57 66 10.1142/S2301385023500012 

  45. 45. Morimoto S. Sanada M. Takeda Y. Sinusoidal current drive system of permanent magnet synchronous motor with low resolution position sensor Proceedings of the IAS ‘96. Conference Record of the 1996 IEEE Industry Applications Conference Thirty-First IAS Annual Meeting San Diego, CA, USA 6–10 October 1996 Volume 1 9 14 10.1109/IAS.1996.556990 

  46. 46. Shen J.X. Zhu Z.Q. Howe D. PM brushless drives with low-cost and low-resolution position sensors Proceedings of the 4th International Power Electronics and Motion Control Conference, IPEMC Xi’an, China 14–16 August 2004 Volume 2 1033 1038 

  47. 47. Buja G. Bertoluzzo M. Keshri R.K. Torque Ripple-Free Operation of PM BLDC Drives with Petal-Wave Current Supply IEEE Trans. Ind. Electron. 2015 62 4034 4043 10.1109/TIE.2014.2385034 

  48. 48. Skóra M. Operation of PM BLDC motor drives with faulty rotor position sensor Proceedings of the 2017 International Symposium on Electrical Machines (SME) Naleczow, Poland 18–21 June 2017 1 6 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로