$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Image quality in image classification: Adaptive image quality modification with adaptive classification

Computers & chemical engineering, v.33 no.2, 2009년, pp.429 - 435  

Yan, Shuo (Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, Canada M5S 3E5) ,  Sayad, Saed (Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, Canada M5S 3E5) ,  Balke, Stephen T. (Corresponding author. Tel.: +1 416 978 7495)

Abstract AI-Helper 아이콘AI-Helper

AbstractProcess monitoring using imaging can provide valuable information. However, the large number of images obtained necessitate automated classification into those showing “good” and “bad” product. This paper shows how a database of reference images can be used to modify ...

Keyword

참고문헌 (28)

  1. Ai Communications Aamodt 7 1 39 1994 10.3233/AIC-1994-7104 Case-based reasoning-Foundational issues, methodological variations, and system approaches 

  2. The American Statistician Agresti 52 2 119 1998 10.2307/2685469 Approximate is better than “exact” for interval estimation of binomial proportions 

  3. An, J.-L., Wang, Z.-O., & Ma, Z.-P. (2003). An incremental learning algorithm for support vector machine. Paper presented at the 2003 International Conference on Machine Learning and Cybernetics. 

  4. International Journal of Imaging Systems and Technology Bartels 8 2 214 1997 10.1002/(SICI)1098-1098(1997)8:2<214::AID-IMA8>3.0.CO;2-D Automated microscopy in diagnostic histopathology: From image processing to automated reasoning 

  5. Pattern Recognition Letters Bruzzone 20 11-13 1241 1999 10.1016/S0167-8655(99)00091-4 An incremental-learning neural network for the classification of remote-sensing images 

  6. IEEE Transactions on Neural Networks Carpenter 3 5 698 1992 10.1109/72.159059 Fuzzy ARTMAP: A neural network architecture for incremental supervised learning of analog multidimensional maps 

  7. Analytica Chimica Acta Dieterle 490 1-2 71 2003 10.1016/S0003-2670(03)00338-6 Growing neural networks for a multivariate calibration and variable selection of time-resolved measurements 

  8. Engineering Applications of Artificial Intelligence Ficet-Cauchard 12 6 733 1999 10.1016/S0952-1976(99)00041-X CBR for the management and reuse of image-processing expertise: a conversational system 

  9. Journal of Computer and System Sciences Freund 55 1 119 1997 10.1006/jcss.1997.1504 A decision-theoretic generalization of on-line learning and an application to boosting 

  10. IEEE Transactions on Neural Networks Fu 7 3 757 1996 10.1109/72.501732 Incremental backpropagation learning networks 

  11. 10.1007/BFb0020609 Grimnes, M., & Aamodt, A. (1996). A two layer case-based reasoning architecture for medical image understanding. In Advances in Case-Based Reasoning (Vol. 1168, pp. 164-178). 

  12. Artificial Intelligence in Medicine Haddad 9 1 61 1997 10.1016/S0933-3657(96)00361-2 Feasibility analysis of a case-based reasoning system for automated detection of coronary heart disease from myocardial scintigrams 

  13. Ing, L., & Balke, S. T. (2002). In-line measurement of dispersed phase properties using the scanning particle monitor. Paper presented at the ANTEC 2002, San Francisco. 

  14. 10.1007/BFb0056325 Jarmulak, J. (1998). Case-based classification of ultrasonic B-scans: Case-base organisation and case retrieval. In Advances in case-based reasoning. (Vol. 1488, pp. 100-111). 

  15. Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. Paper presented at the Proceedings of International Joint Conference on Artificial Intelligence, Montreal, Quebec, Canada. 

  16. Leake 1996 Case-Based Reasoning: Experiences, Lessons, and Future Directions 

  17. Investigative Radiology Macura 29 4 497 1994 10.1097/00004424-199404000-00020 Computerized case-based instructional-system for computed-tomography and magnetic-resonance-imaging of brain-tumors 

  18. 10.1007/3-540-44593-5_28 McSherry, D. (2001). Precision and recall in interactive case-based reasoning. In Case-Based Reasoning Research and Development, Proceedings (Vol. 2080, pp. 392-406). 

  19. Fuzzy Sets and Systems Mouchaweh 132 1 49 2002 10.1016/S0165-0114(02)00060-X Incremental learning in fuzzy pattern matching 

  20. Perner 45 1998 Advances in pattern recognition Using CBR Learning for the low-level and highlevel unit of an image interpretation system 

  21. 10.1007/3-540-48508-2_38 Perner, P. (1999). An architecture for a CBR image segmentation system. In Case-based reasoning research and development (Vol. 1650, pp. 525-534). 

  22. 10.1007/3-540-44527-7_41 Perner, P. (2001a). CBR-based ultra sonic image interpretation. In Advances in case-based reasoning, Proceedings (Vol. 1898, pp. 479-490). 

  23. 10.1007/3-540-44593-5_3 Perner, P. (2001b). Why case-based reasoning is attractive for image interpretation. In Case-based reasoning research and development, Proceedings (Vol. 2080, pp. 27-43). 

  24. Engineering Applications of Artificial Intelligence Perner 15 2 193 2002 10.1016/S0952-1976(02)00020-9 Are case-based reasoning and dissimilarity-based classification two sides of the same coin? 

  25. Sayad 2003 Proceedings of the Fourth International Conference on Data Mining, Data Mining IV An intelligent learning machine 

  26. Computers & Chemical Engineering Torabi 30 1 18 2005 10.1016/j.compchemeng.2005.06.008 On-line adaptive Bayesian classification for in-line particle image monitoring in polymer film manufacturing 

  27. Yan, S. (2007). Adaptive image quality improvement with Bayesian classification for in-line monitoring. University Toronto, Toronto, Ontario, Canada. 

  28. Computers and Chemical Engineering Yan 33 421 2009 10.1016/j.compchemeng.2008.10.013 Image quality in image classification: Design and construction of an Image Quality Database 

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로