$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Analysis of a metal filling and liner formation mechanism of the blind via with nano-Ag particles for TSV (through silicon via) interconnection

Journal of micromechanics and microengineering.: structures, devices, and systems, v.22 no.7, 2012년, pp.075013 -   

Ham, Y-H ,  Kim, D-P ,  Baek, K-H ,  Park, K-S ,  Kwon, K-H ,  Do, L-M

Abstract AI-Helper 아이콘AI-Helper

We investigated a metal filling and liner formation mechanism with a nano-Ag particle for the blind Si via, which is used in the via first process of through silicon via (TSV) interconnection. Using the deep reactive ion etching process, we produced the blind Si via (which is called the blind via ho...

참고문헌 (27)

  1. [1] Sakuma K et al 2008 3D chip-stacking technology with through-silicon vias and low-volume lead free interconnections IBM. J. Res. Dev. 52 611–22 10.1147/JRD.2008.5388567 3D chip-stacking technology with through-silicon vias and low-volume lead free interconnections Sakuma K et al IBM. J. Res. Dev. 0018-8646 52 6 2008 611 622 

  2. [2] Kim J W and Jung S B 2009 Fabrication and electrical characterization of through-Si-via interconnect for 3D packaging J. Micro/Nanolith. MEMS MOEMS 8 013040 10.1117/1.3081417 Fabrication and electrical characterization of through-Si-via interconnect for 3D packaging Kim J W and Jung S B J. Micro/Nanolith. MEMS MOEMS 1932-5150 8 1 013040 2009 

  3. [3] Kurita Y, Matsui S, Takahashi N, Soejima K, Komuro M, Itou M and Kawano M 2009 Vertical integration of stacked DRAM and high-speed logic device using SMAFTI technology IEEE Trans. Adv. Packag. 32 657–65 10.1109/TADVP.2009.2015461 Vertical integration of stacked DRAM and high-speed logic device using SMAFTI technology Kurita Y, Matsui S, Takahashi N, Soejima K, Komuro M, Itou M and Kawano M IEEE Trans. Adv. Packag. 1521-3323 32 3 2009 657 665 

  4. [4] Carson F, Lee H T, Yee J H, Punzalan J and Fontanilla E 2011 Die to die copper wire bonding enabling low cost 3D packaging Proc. Electron. Compon. Technol. Conf. pp 1502–7 Die to die copper wire bonding enabling low cost 3D packaging Carson F Lee H T Yee J H Punzalan J Fontanilla E Proc. Electron. Compon. Technol. Conf. 2011 1502 1507 

  5. [5] Niitsu K and Kuroda T 2010 An inductive-coupling inter-chip link for high-performance and low-power 3D system integration InTech Solid State Circuits Technologies ed J W Swart pp 281–306 10.5772/6885 An inductive-coupling inter-chip link for high-performance and low-power 3D system integration InTech Niitsu K, Kuroda T Solid State Circuits Technologies 2010 281 306 

  6. [6] Kuhne S and Hierold C 2011 Wafer-level packaging and direct interconnection technology based on hybrid bonding and through silicon vias J. Micromech. Microeng. 21 085032 Wafer-level packaging and direct interconnection technology based on hybrid bonding and through silicon vias Kuhne S and Hierold C J. Micromech. Microeng. 0960-1317 21 8 085032 2011 

  7. [7] Lee B W, Tsai J Y, Jin H, Yoon C K and Tummala R R 2008 New 3D chip stacking architectures by wire-on-bump and bump-on-flex IEEE Trans. Adv. Packag. 31 367–76 10.1109/TADVP.2007.909454 New 3D chip stacking architectures by wire-on-bump and bump-on-flex Lee B W, Tsai J Y, Jin H, Yoon C K and Tummala R R IEEE Trans. Adv. Packag. 1521-3323 31 2 2008 367 376 

  8. [8] Ranganathan N, Ebin L, Linn L, Vincent L W S, Navas O K, Kripesh V and Balasubramanian N 2008 Integration of high aspect ratio tapered silicon via for through-silicon interconnection Proc. Electron. Compon. Technol. Conf. pp 859–65 Integration of high aspect ratio tapered silicon via for through-silicon interconnection Ranganathan N Ebin L Linn L Vincent L W S Navas O K Kripesh V Balasubramanian N Proc. Electron. Compon. Technol. Conf. 2008 859 865 

  9. [9] Ham Y H, Kim D P, Park K S, Jeong Y S, Yun H J, Baek K H, Kwon K H, Lee K and Do L M 2011 Dual etch processes of via and metal paste filling for through silicon via process Thin Solid Films 519 6727–31 10.1016/j.tsf.2011.01.406 Dual etch processes of via and metal paste filling for through silicon via process Ham Y H, Kim D P, Park K S, Jeong Y S, Yun H J, Baek K H, Kwon K H, Lee K and Do L M Thin Solid Films 0040-6090 519 20 2011 6727 6731 

  10. [10] Song C, Wang Z and Liu L 2010 Bottom-up copper electroplating using transfer wafers for fabrication of high aspect-ratio through-silicon-vias Microelectron. Eng. 87 510–3 10.1016/j.mee.2009.06.029 Bottom-up copper electroplating using transfer wafers for fabrication of high aspect-ratio through-silicon-vias Song C, Wang Z and Liu L Microelectron. Eng. 0167-9317 87 3 2010 510 513 

  11. [11] Koyanagi M, Fukushima T and Tanaka T 2009 High-density through silicon vias for 3D LSIs Proc. IEEE 97 49–59 10.1109/JPROC.2008.2007463 High-density through silicon vias for 3D LSIs Koyanagi M, Fukushima T and Tanaka T Proc. IEEE 0018-9219 97 1 2009 49 59 

  12. [12] Kikuchi H, Yamada Y, Ali A M, Liang J, Fukushima T, Tanaka T and Koyanaki M 2008 Tungsten through-silicon via technology for three-dimensional LSIs Japan. J. Appl. Phys. 47 2801–6 10.1143/JJAP.47.2801 Tungsten through-silicon via technology for three-dimensional LSIs Kikuchi H, Yamada Y, Ali A M, Liang J, Fukushima T, Tanaka T and Koyanaki M Japan. J. Appl. Phys. 0021-4922 47 4 2008 2801 2806 

  13. [13] Cho B H, Yun J J and Lee W J 2007 Filling of very fine via holes for three-dimensional packaging by using ionized metal plasma sputtering and electroplating Japan. J. Appl. Phys. 46 L1135–7 10.1143/JJAP.46.L1135 Filling of very fine via holes for three-dimensional packaging by using ionized metal plasma sputtering and electroplating Cho B H, Yun J J and Lee W J Japan. J. Appl. Phys. 0021-4922 46 No. 46 2007 L1135 L1137 

  14. [14] Takenaka K, Shiratani M, Takeshita M, Kita M, Koga K and Watanabe Y 2005 Control of deposition profile of Cu for large-scale integration (LSI) interconnects by plasma chemical vapor deposition Pure. Appl. Chem. 77 391–8 10.1351/pac200577020391 Control of deposition profile of Cu for large-scale integration (LSI) interconnects by plasma chemical vapor deposition Takenaka K, Shiratani M, Takeshita M, Kita M, Koga K and Watanabe Y Pure. Appl. Chem. 0033-4545 77 2 2005 391 398 

  15. [15] Wolf M J, Dretschkow T, Wunderle B, Jurgensen N, Engelmann G, Ehrmann O, Uhlig A, Michel B and Reichl H 2008 High aspect ratio TSV copper filling with different seed layers Proc. Electron. Compon. Technol. Conf. pp 563–70 High aspect ratio TSV copper filling with different seed layers Wolf M J Dretschkow T Wunderle B Jurgensen N Engelmann G Ehrmann O Uhlig A Michel B Reichl H Proc. Electron. Compon. Technol. Conf. 2008 563 570 

  16. [16] Dow W P, Lu C W, Lin J Y and Hsu F C 2011 Highly selective Cu electrodeposition for filling through silicon holes Electrochem. Solid State Lett. 14 D63–7 10.1149/1.3562278 Highly selective Cu electrodeposition for filling through silicon holes Dow W P, Lu C W, Lin J Y and Hsu F C Electrochem. Solid State Lett. 1099-0062 14 6 2011 D63 D67 

  17. [17] Tsai T C, Tsao W C, Lin W, Hsu C L, Lin C L, Hsu C M, Lin J F, Huang C C and Wu J Y 2012 CMP process development for the via-middle 3D TSV applications at 28 nm technology node Microelectron. Eng. 92 29–33 10.1016/j.mee.2011.03.004 CMP process development for the via-middle 3D TSV applications at 28 nm technology node Tsai T C, Tsao W C, Lin W, Hsu C L, Lin C L, Hsu C M, Lin J F, Huang C C and Wu J Y Microelectron. Eng. 0167-9317 92 2012 29 33 

  18. [18] Baek K H, Kim D P, Park K S, Ham Y H, Do L M, Lee K and Kim K S 2011 Conformal deposition of an insulator layer and Ag nano paste filling of a through silicon via for a 3D interconnection J. Korean Phys. Soc. 59 2252–8 10.3938/jkps.59.2252 Conformal deposition of an insulator layer and Ag nano paste filling of a through silicon via for a 3D interconnection Baek K H, Kim D P, Park K S, Ham Y H, Do L M, Lee K and Kim K S J. Korean Phys. Soc. 0374-4884 59 3 2011 2252 2258 

  19. [19] Joo S and Baldwin D F 2010 Adhesion mechanisms of nanoparticle silver to substrate materials: identification Nanotechnology 21 055204-1-12 Adhesion mechanisms of nanoparticle silver to substrate materials: identification Joo S and Baldwin D F Nanotechnology 21 2010 055204-1-12 

  20. [20] Choi S, Stassi S, Pisano A P and Zohdi T I 2010 Coffee-ring effect-based three-dimensional patterning of micro/nanoparticle assembly with a single droplet Langmuir 26 11690–8 10.1021/la101110t Coffee-ring effect-based three-dimensional patterning of micro/nanoparticle assembly with a single droplet Choi S, Stassi S, Pisano A P and Zohdi T I Langmuir 0743-7463 26 14 2010 11690 11698 

  21. [21] Yunker P J, Still T, Lohr M A and Yodh A G 2011 Suppression of the coffee-ring effect by shape-dependent capillary interactions Nature 476 308–11 10.1038/nature10344 Suppression of the coffee-ring effect by shape-dependent capillary interactions Yunker P J, Still T, Lohr M A and Yodh A G Nature 0028-0836 476 7360 2011 308 311 

  22. [22] Zhang R, Moon K S, Lin W and Wong C P 2010 Preparation of highly conductive polymer nanocomposites by low temperature sintering of silver nanoparticles J. Mater. Chem. 20 2018–23 10.1039/b921072e Preparation of highly conductive polymer nanocomposites by low temperature sintering of silver nanoparticles Zhang R, Moon K S, Lin W and Wong C P J. Mater. Chem. 0959-9428 20 10 2010 2018 2023 

  23. [23] Bonnemann H and Richards R M 2001 Nanoscopic metal particles—synthetic methods and potential applications Eur. J. Inorg. Chem. 2001 2455–80 10.1002/1099-0682(200109)2001:10<2455::AID-EJIC2455>3.0.CO;2-Z Nanoscopic metal particles—synthetic methods and potential applications Bonnemann H and Richards R M Eur. J. Inorg. Chem. 1434-1948 2001 10 2001 2455 2480 

  24. [24] Kim D J and Moon J H 2005 Highlyconductive ink jet printed films of nanosilver particles for printable electronics Electrochem. Solid State Lett. 8 J30–3 10.1149/1.2073670 Highlyconductive ink jet printed films of nanosilver particles for printable electronics Kim D J and Moon J H Electrochem. Solid State Lett. 1099-0062 8 11 2005 J30 J33 

  25. [25] Shin H, Kim H, Lee H, Yoo H, Kim J, Kim H and Lee M 2008 Photoresist-free lithographic patterning of solution-processed nanostructured metal thin films Adv. Mater. 20 3457–61 10.1002/adma.200800157 Photoresist-free lithographic patterning of solution-processed nanostructured metal thin films Shin H, Kim H, Lee H, Yoo H, Kim J, Kim H and Lee M Adv. Mater. 0935-9648 20 18 2008 3457 3461 

  26. [26] Chou K S, Huang K C and Lee H H 2005 Fabrication and sintering effect on the morphologies and conductivity of nano-Ag particle films by the spin coating method Nanotechnology 16 779–84 10.1088/0957-4484/16/6/027 Fabrication and sintering effect on the morphologies and conductivity of nano-Ag particle films by the spin coating method Chou K S, Huang K C and Lee H H Nanotechnology 0957-4484 16 6 2005 779 784 

  27. [27] National Institute of Standard and Technology (NIST) Chemical web book http://webbook.nist.gov/chemistry National Institute of Standard and Technology (NIST) 

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로