$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Genomic selection in hybrid breeding

Plant breeding : Zeitschrift für Pflanzenzüchtung, v.134 no.1, 2015년, pp.1 - 10  

Zhao, Yusheng (Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Gatersleben, Germany) ,  Mette, Michael F. (Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Gatersleben, Germany) ,  Reif, Jochen C. (Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Gatersleben, Germany) ,  Ordon, F.

Abstract AI-Helper 아이콘AI-Helper

AbstractWhile hybrid breeding is widely applied in outbreeding species, for many self‐pollinating crop plants, it has only recently been established. This may have had its reason in the limitations of methods available for hybrid performance prediction, in particular when established heterotic...

주제어

참고문헌 (94)

  1. Albrecht , T. , V. Wimmer , H.‐J. Auinger , M. Erbe , C. Knaak , M. Ouzunova , H. Simianer , and C.‐C. Schön , 2011 : Genome‐based prediction of testcross values in maize . Theor. Appl. Genet. 123 , 339 — 350 . 

  2. Albrecht , T. , H.‐J. Auinger , V. Wimmer , J. O. Ogutu , C. Knaak , M. Ouzunova , H.‐P. Piepho , and C.‐C. Schön , 2014 : Genome‐based prediction of maize hybrid performance across genetic groups, testers, locations, and years . Theor. Appl. Genet. 127 , 1375 — 1386 . 

  3. Alheit , K. V. , H. P. Maurer , J. C. Reif , M. R. Tucker , V. Hahn , E. A. Weissmann , and T. Würschum , 2012 : Genome‐wide evaluation of genetic diversity and linkage disequilibrium in winter and spring triticale (x Triticosecale Wittmack) . BMC Genomics 13 , 235 . 

  4. Bernardo , R. , 1994 : Prediction of maize single‐cross performance using RFLPs and information from related hybrids . Crop Sci. 34 , 20 — 25 . 

  5. Bernardo , R. , 1996a : Best linear unbiased prediction of maize single‐cross performance given erroneous inbred relationships . Crop Sci. 36 , 862 — 866 . 

  6. Bernardo , R. , 1996b : Best linear unbiased prediction of the performance of crosses between untested maize inbreds . Crop Sci. 36 , 872 — 876 . 

  7. Bernardo , R. , 1996c : Best linear unbiased prediction of maize single‐cross performance . Crop Sci. 36 , 50 — 56 . 

  8. Bernardo , R. , 1998 : A model for marker‐assisted selection among single crosses with multiple genetic markers . Theor. Appl. Genet. 97 , 473 — 478 . 

  9. Bernardo , R. , 2014 : Genomewide selection when major genes are known . Crop Sci. 54 , 68 — 75 . 

  10. Breseghello , F. , and M. E. Sorrells , 2006 : Association mapping of kernel size and milling quality in wheat ( Triticum aestivum L.) cultivars . Genetics 172 , 1165 — 1177 . 

  11. Cavanagh , C. R. , S. Chao , S. Wang , B. E. Huang , S. Stephen , S. Kiani , K. Forrest , C. Saintenac , G. L. Brown‐Guedira , and A. Akhunova , 2013 : Genome‐wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars . Proc. Natl Acad. Sci. USA 110 , 8057 — 8062 . 

  12. Charcosset , A. , B. Bonnisseau , O. Touchebeuf , J. Burstin , Y. Barrière , A. Gallais , and J.‐B. Denis , 1998 : Prediction of maize hybrid silage performance using marker data: comparison of several models for specific combining ability . Crop Sci. 38 , 38 — 44 . 

  13. Cochran , W. G. , 1951 : Improvement by means of selection . Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, Univ. of California Press, Berkeley, 449 — 470 . 

  14. Coors , J. G. , and S. Pandey , 1999 : The Genetics and Exploitation of Heterosis in Crops . American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America , Madison, WI . 

  15. Crossa , J. , P. Pérez , J. Hickey , J. Burgueño , L. Ornella , J. Cerón‐Rojas , X. Zhang , S. Dreisigacker , R. Babu , and Y. Li , 2014 : Genomic prediction in CIMMYT maize and wheat breeding programs . Heredity 112 , 48 — 60 . 

  16. Daetwyler , H. D. , R. Pong‐Wong , B. Villanueva , and J. A. Woolliams , 2010 : The impact of genetic architecture on genome‐wide evaluation methods . Genetics 185 , 1021 — 1031 . 

  17. Duvick , D. N. , 2005 : Genetic progress in yield of United States maize ( Zea mays L.) . Maydica 50 , 193 — 202 . 

  18. Elshire , R. J. , J. C. Glaubitz , Q. Sun , J. A. Poland , K. Kawamoto , E. S. Buckler , and S. E. Mitchell , 2011 : A robust, simple genotyping‐by‐sequencing (GBS) approach for high diversity species . PLoS ONE 6 , e19379 . 

  19. Endelman , J. B. , G. N. Atlin , Y. Beyene , K. Semagn , X. Zhang , M. E. Sorrells , and J.‐L. Jannink , 2014 : Optimal design of preliminary yield trials with genome‐wide markers . Crop Sci. 54 , 48 — 59 . 

  20. Falconer , D. S. , and T. F. C. Mackay , 1996 : Introduction to Quantitative Genetics , 4th edn . Longman , Harlow, UK . 

  21. Fischer , S. , H. Maurer , T. Würschum , J. Möhring , H.‐P. Piepho , C. Schön , E.‐M. Thiemt , B. Dhillon , E. Weissmann , A. Melchinger , and J. C. Reif , 2010 : Development of heterotic groups in triticale . Crop Sci. 50 , 584 — 590 . 

  22. Gianola , D. , G. de Los Campos , W. G. Hill , E. Manfredi , and R. Fernando , 2009 : Additive genetic variability and the Bayesian alphabet . Genetics 183 , 347 — 363 . 

  23. Goddard , M. E. , B. J. Hayes , and T. H. Meuwissen , 2010 : Genomic selection in livestock populations . Genet. Res. 92 , 413 — 421 . 

  24. Gowda , M. , C. Kling , T. Würschum , W. Liu , H. Maurer , V. Hahn , and J. Reif , 2010 : Hybrid breeding in durum wheat: heterosis and combining ability . Crop Sci. 50 , 2224 — 2230 . 

  25. Gowda , M. , C. F. H. Longin , V. Lein , and J. C. Reif , 2012 : Relevance of specific versus general combining ability in winter wheat . Crop Sci. 52 , 2494 — 2500 . 

  26. Gowda , M. , Y. Zhao , H. P. Maurer , E. A. Weissmann , T. Würschum , and J. C. Reif , 2013a : Best linear unbiased prediction of triticale hybrid performance . Euphytica 191 , 223 — 230 . 

  27. Gowda , M. , Y. Zhao , T. Würschum , C. F. Longin , T. Miedaner , E. Ebmeyer , R. Schachschneider , E. Kazman , J. Schacht , and J. Martinant , 2013b : Relatedness severely impacts accuracy of marker‐assisted selection for disease resistance in hybrid wheat . Heredity 112 , 552 — 561 . 

  28. Guo , T. , H. Li , J. Yan , J. Tang , J. Li , Z. Zhang , L. Zhang , and J. Wang , 2013 : Performance prediction of F1 hybrids between recombinant inbred lines derived from two elite maize inbred lines . Theor. Appl. Genet. 126 , 189 — 201 . 

  29. Habier , D. , 2010 : More than a third of the WCGALP presentations on genomic selection . J. Anim. Breed. Genet. 127 , 336 — 337 . 

  30. Habier , D. , R. L. Fernando , K. Kizilkaya , and D. J. Garrick , 2011 : Extension of the Bayesian alphabet for genomic selection . BMC Bioinformatics 12 , 186 . 

  31. Hagdorn , S. , K. R. Lamkey , M. Frisch , P. E. Guimaraes , and A. E. Melchinger , 2003 : Molecular genetic diversity among progenitors and derived elite lines of BSSS and BSCB1 maize populations . Crop Sci. 43 , 474 — 482 . 

  32. Hanson , W. D. , and C. A. Brim , 1963 : Optimum allocation of test material for two‐stage testing with an application to evaluation of soybean lines . Crop Sci. 3 , 43 — 49 . 

  33. Heffner , E. L. , M. E. Sorrells , and J.‐L. Jannink , 2009 : Genomic selection for crop improvement . Crop Sci. 49 , 1 — 12 . 

  34. Henderson , C. R. , 1975 : Best linear unbiased estimation and prediction under a selection model . Biometrics 31 , 423 — 447 . 

  35. Henderson , C. R. , O. Kempthorne , S. R. Searle , and C. Von Krosigk , 1959 : The estimation of environmental and genetic trends from records subject to culling . Biometrics 15 , 192 — 218 . 

  36. Heslot , N. , H.‐P. Yang , M. E. Sorrells , and J.‐L. Jannink , 2012 : Genomic selection in plant breeding: a comparison of models . Crop Sci. 52 , 146 — 160 . 

  37. Hofheinz , N. , D. Borchardt , K. Weissleder , and M. Frisch , 2012 : Genome‐based prediction of test cross performance in two subsequent breeding cycles . Theor. Appl. Genet. 125 , 1639 — 1645 . 

  38. Iwata , H. , and J.‐L. Jannink , 2011 : Accuracy of genomic selection prediction in barley breeding programs: a simulation study based on the real single nucleotide polymorphism data of barley breeding lines . Crop Sci. 51 , 1915 — 1927 . 

  39. Jacobson , A. , L. Lian , S. Zhong , and R. Bernardo , 2014 : General combining ability model for genomewide selection in a biparental cross . Crop Sci. 54 , 895 — 905 . 

  40. Jannink , J.‐L. , A. J. Lorenz , and H. Iwata , 2010 : Genomic selection in plant breeding: from theory to practice . Brief. Funct. Genomics 9 , 166 — 177 . 

  41. Jenkins , M. T. , 1934 : Methods of estimating the performance of double crosses in corn . J. Am. Soc. Agron. 26 , 199 — 204 . 

  42. Lande , R. , and R. Thompson , 1990 : Efficiency of marker‐assisted selection in the improvement of quantitative traits . Genetics 124 , 743 — 756 . 

  43. Longin , C. F. H. , H. F. Utz , A. E. Melchinger , and J. C. Reif , 2007 : Hybrid maize breeding with doubled haploids: II. Optimum number and type of testers in two‐stage selection for general combining ability . Theor. Appl. Genet. 114 , 393 — 402 . 

  44. Longin , C. F. H. , J. Mühleisen , H. P. Maurer , H. Zhang , M. Gowda , and J. C. Reif , 2012 : Hybrid breeding in autogamous cereals . Theor. Appl. Genet. 125 , 1087 — 1096 . 

  45. Longin , C. F. H. , M. Gowda , J. Mühleisen , E. Ebmeyer , E. Kazman , R. Schachschneider , J. Schacht , M. Kirchhoff , Y. Zhao , and J. C. Reif , 2013 : Hybrid wheat: quantitative genetic parameters and consequences for the design of breeding programs . Theor. Appl. Genet. 126 , 2791 — 2801 . 

  46. Lorenz , A. J. , 2013 : Resource allocation for maximizing prediction accuracy and genetic gain of genomic selection in plant breeding: a simulation experiment. G3: genes Genomes . Genetics 3 , 481 — 491 . 

  47. Lorenz , A. J. , S. Chao , F. G. Asoro , E. L. Heffner , T. Hayashi , H. Iwata , K. P. Smith , M. E. Sorrells , and J.‐L. Jannink , 2011 : Genomic selection in plant breeding: knowledge and prospects . Adv. Agron. 110 , 77 — 123 . 

  48. Lorenzana , R. E. , and R. Bernardo , 2009 : Accuracy of genotypic value predictions for marker‐based selection in biparental plant populations . Theor. Appl. Genet. 120 , 151 — 161 . 

  49. Massman , J. M. , A. Gordillo , R. E. Lorenzana , and R. Bernardo , 2013 : Genomewide predictions from maize single‐cross data . Theor. Appl. Genet. 126 , 13 — 22 . 

  50. Maurer , H. P. , A. E. Melchinger , and M. Frisch , 2008 : Population genetic simulation and data analysis with Plabsoft . Euphytica 161 , 133 — 139 . 

  51. Melchinger , A. E. , and R. K. Gumber , 1998 : Overview of heterosis and heterotic groups in agronomic crops . Concepts Breed. Heterosis Crop Plant. In Lamkey KR, Staub JE, (eds) Concepts and breeding of heterosis in crop plants, CSSA, Madison, Wisconsin, pp 29 — 44 . 

  52. Meuwissen , T. H. E. , B. J. Hayes , and M. E. Goddard , 2001 : Prediction of total genetic value using genome‐wide dense marker maps . Genetics 157 , 1819 — 1829 . 

  53. Miedaner , T. , Y. Zhao , M. Gowda , C. F. Longin , V. Korzun , E. Ebmeyer , E. Kazman , and J. C. Reif , 2013 : Genetic architecture of resistance to Septoria tritici blotch in European wheat . BMC Genomics 14 , 858 . 

  54. Mühleisen , J. , H. P. Maurer , G. Stiewe , P. Bury , and J. C. Reif , 2013 : Hybrid breeding in barley . Crop Sci. 53 , 819 — 824 . 

  55. Panter , D. , and F. Allen , 1995a : Using best linear unbiased predictions to enhance breeding for yield in soybean: I. Choosing parents . Crop Sci. 35 , 397 — 405 . 

  56. Panter , D. , and F. Allen , 1995b : Using best linear unbiased predictions to enhance breeding for yield in soybean: II. Selection of superior crosses from a limited number of yield trials . Crop Sci. 35 , 405 — 410 . 

  57. Piepho , H. P. , 2009 : Ridge regression and extensions for genomewide selection in maize . Crop Sci. 49 , 1165 — 1176 . 

  58. Piepho , H. , J. Ogutu , T. Schulz‐Streeck , B. Estaghvirou , A. Gordillo , and F. Technow , 2012 : Efficient computation of ridge‐regression best linear unbiased prediction in genomic selection in plant breeding . Crop Sci. 52 , 1093 — 1104 . 

  59. Reif , J. C. , A. R. Hallauer , and A. E. Melchinger , 2005 : Heterosis and heterotic pattern in maize . Maydica 50 , 215 — 223 . 

  60. Reif , J. C. , F.‐M. Gumpert , S. Fischer , and A. E. Melchinger , 2007 : Impact of interpopulation divergence on additive and dominance variance in hybrid populations . Genetics 176 , 1931 — 1934 . 

  61. Reif , J. C. , M. Gowda , H. P. Maurer , C. Longin , V. Korzun , E. Ebmeyer , R. Bothe , C. Pietsch , and T. Würschum , 2011 : Association mapping for quality traits in soft winter wheat . Theor. Appl. Genet. 122 , 961 — 970 . 

  62. Reif , J. C. , Y. Zhao , T. Würschum , M. Gowda , and V. Hahn , 2013 : Genomic prediction of sunflower hybrid performance . Plant Breeding 132 , 107 — 114 . 

  63. Resende , M. F. , P. Muñoz , M. D. Resende , D. J. Garrick , R. L. Fernando , J. M. Davis , E. J. Jokela , T. A. Martin , G. F. Peter , and M. Kirst , 2012 : Accuracy of genomic selection methods in a standard data set of loblolly pine ( Pinus taeda L.) . Genetics 190 , 1503 — 1510 . 

  64. Riedelsheimer , C. , and A. E. Melchinger , 2013 : Optimizing the allocation of resources for genomic selection in one breeding cycle . Theor. Appl. Genet. 126 , 2835 — 2848 . 

  65. Riedelsheimer , C. , A. Czedik‐Eysenberg , C. Grieder , J. Lisec , F. Technow , R. Sulpice , T. Altmann , M. Stitt , L. Willmitzer , and A. E. Melchinger , 2012a : Genomic and metabolic prediction of complex heterotic traits in hybrid maize . Nat. Genet. 44 , 217 — 220 . 

  66. Riedelsheimer , C. , F. Technow , and A. E. Melchinger , 2012b : Comparison of whole‐genome prediction models for traits with contrasting genetic architecture in a diversity panel of maize inbred lines . BMC Genomics 13 , 452 . 

  67. Rincent , R. , D. Laloë , S. Nicolas , T. Altmann , D. Brunel , P. Revilla , V. M. Rodríguez , J. Moreno‐Gonzalez , A. Melchinger , E. Bauer , C.‐C. Schön , N. Meyer , C. Giauffret , C. Bauland , P. Jamin , J. Laborde , H. Monod , P. Flament , A. Charcosset , and L. Moreau , 2012 : Maximizing the reliability of genomic selection by optimizing the calibration set of reference individuals: comparison of methods in two diverse groups of maize inbreds ( Zea mays L.) . Genetics 192 , 715 — 728 . 

  68. Roussel , V. , J. Koenig , M. Beckert , and F. Balfourier , 2004 : Molecular diversity in French bread wheat accessions related to temporal trends and breeding programmes . Theor. Appl. Genet. 108 , 920 — 930 . 

  69. Schaeffer , L. , 2006 : Strategy for applying genome‐wide selection in dairy cattle . J. Anim. Breed. Genet. 123 , 218 — 223 . 

  70. Schnell , F. , 1965 : Die Covarianz zwischen Verwandten in einer genorthogonalen Population. I. Allgemeine Theorie . Biom. Z. 7 , 1 — 49 . 

  71. Schrag , T. A. , M. Frisch , B. S. Dhillon , and A. E. Melchinger , 2009a : Marker‐based prediction of hybrid performance in maize single‐crosses involving doubled haploids . Maydica 54 , 353 — 362 . 

  72. Schrag , T. A. , J. Möhring , H. P. Maurer , B. S. Dhillon , A. E. Melchinger , H.‐P. Piepho , A. P. Sørensen , and M. Frisch , 2009b : Molecular marker‐based prediction of hybrid performance in maize using unbalanced data from multiple experiments with factorial crosses . Theor. Appl. Genet. 118 , 741 — 751 . 

  73. Schrag , T. A. , J. Möhring , A. E. Melchinger , B. Kusterer , B. S. Dhillon , H.‐P. Piepho , and M. Frisch , 2010 : Prediction of hybrid performance in maize using molecular markers and joint analyses of hybrids and parental inbreds . Theor. Appl. Genet. 120 , 451 — 461 . 

  74. Sorensen , D. , and D. Gianola , 2002 : Likelihood, Bayesian and MCMC Methods in Quantitative Genetics. Statistics for Biology and Health . Springer‐Verlag , New York . 

  75. Storlie , E. , and G. Charmet , 2013 : Genomic selection accuracy using historical data generated in a wheat breeding program . Plant Genome 6 , doi: 10.3835/plantgenome2013.01.0001. 

  76. Technow , F. , C. Riedelsheimer , T. A. Schrag , and A. E. Melchinger , 2012 : Genomic prediction of hybrid performance in maize with models incorporating dominance and population specific marker effects . Theor. Appl. Genet. 125 , 1181 — 1194 . 

  77. Tomerius , A. M. , 2001 : Optimizing the development of seed‐parent lines in hybrid rye breeding . Ph.D. thesis. University of Hohenheim , Stuttgart . 

  78. Utz , H. F. , 1969 : Mehrstufenselektion in der Pflanzenzüchtung (in German). Arbeiten der Universität Hohenheim , vol. 49 . Verlag Eugen Ulmer , Stuttgart . 

  79. Wang , J. , M. van Ginkel , R. Trethowan , G. Ye , I. DeLacy , D. Podlich , and M. Cooper , 2004 : Simulating the effects of dominance and epistasis on selection response in the CIMMYT Wheat Breeding Program using QuCim . Crop Sci. 44 , 2006 — 2018 . 

  80. Wang , Y. , M. F. Mette , T. Miedaner , M. Gottwald , P. Wilde , J. C. Reif , and Y. Zhao , 2014 : The accuracy of prediction of genomic selection in elite hybrid rye populations surpasses the accuracy of marker‐assisted selection and is equally augmented by multiple field evaluation locations and test years . BMC Genomics 15 , 556 . 

  81. Wellmann , R. , and J. Bennewitz , 2012 : Bayesian models with dominance effects for genomic evaluation of quantitative traits . Genet. Res. 94 , 21 — 37 . 

  82. Whittaker , J. C. , R. Thompson , and M. C. Denham , 2000 : Marker‐assisted selection using ridge regression . Genet. Res. 75 , 249 — 252 . 

  83. Windhausen , V. S. , G. N. Atlin , J. M. Hickey , J. Crossa , J.‐L. Jannink , M. E. Sorrells , B. Raman , J. E. Cairns , A. Tarekegne , and K. Semagn , 2012 : Effectiveness of genomic prediction of maize hybrid performance in different breeding populations and environments. G3: Genes Genomes . Genetics 2 , 1427 — 1436 . 

  84. Würschum , T. , J. C. Reif , T. Kraft , G. Janssen , and Y. Zhao , 2013a : Genomic selection in sugar beet breeding populations . BMC Genet. 14 , 85 . 

  85. Würschum , T. , S. M. Langer , C. F. H. Longin , V. Korzun , E. Akhunov , E. Ebmeyer , R. Schachschneider , J. Schacht , E. Kazman , and J. C. Reif , 2013b : Population structure, genetic diversity and linkage disequilibrium in elite winter wheat assessed with SNP and SSR markers . Theor. Appl. Genet. 126 , 1477 — 1486 . 

  86. Xu , W. , S. Virmani , J. Hernandez , E. Redoña , and L. Sebastian , 2000 : Prediction of hybrid performance in rice: comparisons among best linear unbiased prediction (BLUP) procedure, midparent value, and molecular marker distance . Int. Rice Res. Notes 25 , 12 — 13 . 

  87. Yang , W. , and R. J. Tempelman , 2012 : A Bayesian antedependence model for whole genome prediction . Genetics 190 , 1491 — 1501 . 

  88. Zeng , J. , A. Toosi , R. L. Fernando , J. C. Dekkers , and D. J. Garrick , 2013 : Genomic selection of purebred animals for crossbred performance in the presence of dominant gene action . Genet. Sel. Evol. 45 , 11 . 

  89. Zhao , Y. , M. Gowda , W. Liu , T. Würschum , H. P. Maurer , F. H. Longin , N. Ranc , and J. C. Reif , 2012a : Accuracy of genomic selection in European maize elite breeding populations . Theor. Appl. Genet. 124 , 769 — 776 . 

  90. Zhao , Y. , M. Gowda , F. H. Longin , T. Würschum , N. Ranc , and J. C. Reif , 2012b : Impact of selective genotyping in the training population on accuracy and bias of genomic selection . Theor. Appl. Genet. 125 , 707 — 713 . 

  91. Zhao , Y. , M. Gowda , W. Liu , T. Würschum , H. P. Maurer , F. H. Longin , N. Ranc , H. P. Piepho , and J. C. Reif , 2013a : Choice of shrinkage parameter and prediction of genomic breeding values in elite maize breeding populations . Plant Breeding 132 , 99 — 106 . 

  92. Zhao , Y. , J. Zeng , R. Fernando , and J. C. Reif , 2013b : Genomic prediction of hybrid wheat performance . Crop Sci. 53 , 802 — 810 . 

  93. Zhao , Y. , M. Gowda , T. Würschum , C. F. H. Longin , V. Korzun , S. Kollers , R. Schachschneider , J. Zeng , R. Fernando , and J. Dubcovsky , 2013c : Dissecting the genetic architecture of frost tolerance in Central European winter wheat . J. Exp. Bot. 64 , 4453 — 4460 . 

  94. Zhao , Y. , M. Mette , M. Gowda , C. Longin , and J. Reif , 2014 : Bridging the gap between marker‐assisted and genomic selection of heading time and plant height in hybrid wheat . Heredity 112 , 638 — 645 . 

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로