$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Use of Heat Stress Responsive Gene Expression Levels for Early Selection of Heat Tolerant Cabbage ( Brassica oleracea L.) 원문보기

International journal of molecular sciences, v.14 no.6, 2013년, pp.11871 - 11894  

Park, Hyun Ji (Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahangno, Yuseong-gu, Daejeon 305-806, Korea) ,  Jung, Won Yong (E-Mails: hotfehj@kribb.re.kr (H.J.P.)) ,  Lee, Sang Sook (jwy95@kribb.re.kr (W.Y.J.)) ,  Song, Jun Ho (sslee@kribb.re.kr (S.S.L.)) ,  Kwon, Suk-Yoon (sykwon@kribb.re.kr (S.-Y.K.)) ,  Kim, HyeRan (kimhr@kribb.re.kr (H.K.)) ,  Kim, ChulWook (Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahangno, Yuseong-gu, Daejeon 305-806, Korea) ,  Ahn, Jun Cheul (E-Mails: hotfehj@kribb.re.kr (H.J.P.)) ,  Cho, Hye Sun (jwy95@kribb.re.kr (W.Y.J.))

Abstract AI-Helper 아이콘AI-Helper

Cabbage is a relatively robust vegetable at low temperatures. However, at high temperatures, cabbage has disadvantages, such as reduced disease tolerance and lower yields. Thus, selection of heat-tolerant cabbage is an important goal in cabbage breeding. Easier or faster selection of superior variet...

주제어

참고문헌 (60)

  1. 1 Caunii A. Cuciureanu R. Zakar A.M. Tonea E. Giuchici C. Chemical composition of common leafy vegetables Studia Universitatis Vasile Goldiş 2010 20 45 48 

  2. 2 Kang J. Zai Y. Zhang J. Study on high temperature injury and identification method of heat tolerance in cabbage China Vegetables 2002 1 001 

  3. 3 Hendrick J.P. Hartl F. Molecular chaperone functions of heat-shock proteins Ann. Rev. Biochem 1993 62 349 384 8102520 

  4. 4 Beck F.X. Grunbein R. Lugmayr K. Neuhofer W. Heat shock proteins and the cellular response to osmotic stress Cell Physiol. Biochem 2000 10 303 306 11125209 

  5. 5 Iba K. Acclimative response to temperature stress in higher plants: Approach of genetic engineering for temperature tolerance Annu. Rev. Plant. Biol 2002 53 225 245 12221974 

  6. 6 Ledesma N.A. Kawabata S. Sugiyama N. Effect of high temperature on protein expression in strawberry plants Biol. Plant 2004 48 73 79 

  7. 7 Lee U. Rioflorido I. Hong S.W. Lurkindale J. Waters E.R. Vierling E. The Arabidopsis ClpB/Hsp100 family of proteins: Chaperones for stress and chloroplast development Plant J 2007 49 115 127 17144892 

  8. 8 Timperio A.M. Eqidi M.G. Zolla L. Proteomics applied on plant abiotic stresses: Role of heat shock proteins(HSP) J. Proteomics 2008 71 391 411 18718564 

  9. 9 Kalmar B. Greensmith L. Induction of heat shock proteins for protection against oxidative stress Adv. Drug Deliv. Rev 2009 61 310 318 19248813 

  10. 10 Li Q. Guy C.L. Evidence for non-circadian light/dark-regulated expression of Hsp70s in spinach leaves Plant Physiol 2001 125 1633 1642 11299345 

  11. 11 Giorno F. Wolters-Arts M. Grillo S. Scharf K. Vriezen W.H. Mariani C. Developmental and heat stress-regulated expression of HsfA2 and small heat shock proteins in tomato anthers J. Exp. Bot 2010 61 453 462 19854799 

  12. 12 Richter K. Buchner J. Hsp90: Chaperoning signal transduction J. Cell Physiol 2001 188 281 290 11473354 

  13. 13 Bukau B. Weisman J. Horwich A. Molecular chaperones and protein quality control Cell 2006 125 443 451 16678092 

  14. 14 Frydman J. Folding of newly translocated proteins in vivo : The role of molecular chaperones Annu. Rev. Biochem 2001 70 603 647 11395418 

  15. 15 Wang W. Vinocur B. Shoseyov O. Altman A. Role of plant heat shock proteins and molecular chaperones in the abiotic stress response Trends Plant Sci 2004 9 244 252 15130550 

  16. 16 Alvim F.C. Carolino S.M. Cascardo J.C. Nunes C.C. Martinez C.A. Otoni W.C. Fontes E.P. Enhanced accumulation of Bip in transgenic plants confers tolerance to water stress Plant Physiol 2001 126 1042 1054 11457955 

  17. 17 Ono K. Hibino T. Kohinata T. Suzuki S. Tanaka Y. Nakamura T. Takabe T. Takabe T. Overexpression of DnaK from a halotolerant cyanobacterium Aphanothece halophytica enhances the high-temperature tolerance of tobacco during germination and early growth Plant Sci 2001 160 455 461 11166432 

  18. 18 Silver J.T. Noble E.G. Regulation of survival gene hsp70 Cell Stress Chaperones 2012 17 1 9 21874533 

  19. 19 Young J.C. Moarefi I. Hartl F.U. Hsp90: A specialized but essential protein-folding tool J. Cell Biol 2001 154 267 273 11470816 

  20. 20 Pratt W.B. Krishna P. Olsen L.J. Hsp90-binding immunophilins in plants: The protein movers Trends Plant Sci 2001 6 54 58 11173288 

  21. 21 Queitsch C. Sangster T.A. Lindquist S. Hsp90 as a capacitor phenotypic variation Nature 2002 417 618 624 12050657 

  22. 22 Patel S. Latterich M. The AAA team: Related ATPases with diverse function Trends Cell Biol 1998 8 65 71 9695811 

  23. 23 Burch E.M. Rosano G. Ceccarelli E.A. Chloroplastic Hsp100 chaperones ClpC2 and ClpD interact in vitro with a transit peptide only when it is located at the N -terminus of a protein BMC Plant Biol 2012 12 57 22545953 

  24. 24 Keeler S. Boettger C.M. Haynes J.G. Kuches K.A. Johnson M.M. Thureen D.L. Keeler C.L. Jr Kitto S.L. Acquired thermotolerance and expression of the HSP100/ClpB genes of Lima bean Plant Physiol 2000 123 1121 1132 10889261 

  25. 25 Queitsch C. Hong S.W. Vierling E. Lindquist S. Heat stress protein 101 plays a crucial role in thermotolerance in Arabidopsis Plant Cell 2000 12 479 492 10760238 

  26. 26 Agarwal M. Katiyar-Agarwal S. Sahi C. Gallie D.R. Grover A. Arabidopsis thaliana Hsp100 proteins: Kith and kin Cell Stress Chaperones 2001 6 219 224 11599563 

  27. 27 Adams Z. Clarke A.K. Cutting edge of chloroplast proteolysis Trends Plant Sci 2002 7 451 456 12399180 

  28. 28 Veinger L. Diamant S. Buchner J. Goloubinoff P. The small heat-shock protein IbpB from E. coli stabilizes stress-denatured proteins for subsequent refolding by a multichaperones network J. Biol. Chem 1998 273 11032 11037 9556585 

  29. 29 Lee G.J. Vierling E. A small heat shock protein cooperates with heat shock protein 70 systems to reactive a heat-denatured protein Plant Physiol 2000 122 189 198 10631262 

  30. 30 Basha E. O’Neill H. Vierling E. Small heat shock proteins and α-crystallins: Dynamic proteins with flexible functions Trends Biochem. Sci 2012 37 106 117 22177323 

  31. 31 Baniwal S.K. Bharti K. Chan K.Y. Fauth M. Ganguli A. Kotak S. Mishra S.K. Nover L. Port M. Scharf K.D. Heat stress response in plants: A complex game with chaperone and more than twenty heat transcription factors J. Biosci 2004 29 471 487 15625403 

  32. 32 Wu C. Heat stress trnanscription factors Annu. Rev. Cell Dev. Biol 1995 11 441 469 8689565 

  33. 33 Nover L. Bharti K. DÖring P. Mishra S.K. Ganguli A. Scharf K.D. Arabidopsis and the heat stress transcription factor world: How many heat stress transcription factors do we need? Cell Stress Chaperones 2001 6 177 189 11599559 

  34. 34 Wang F. Dong Q. Jiang H. Zhu S. Chen B. Xiang Y. Genome-wide analysis of the heat shock transcription factors in Populus trichocarpa and Medicago truncatula Mol. Biol. Rep 2012 39 1877 1886 21625849 

  35. 35 Miller G. Mittler R. Could heat shock transcription factors function as hydrogen peroxide sensors in plants? Ann. Bot 2006 98 279 288 16740587 

  36. 36 Hirsch S. Oldroyd G.E. GRAS-domain transcription factors that regulate plant development Plant Signal Behav 2009 4 698 700 19820314 

  37. 37 Di Laurenzio L. Wysocka-Diller J. Malamy J.E. Pysh L. Helariutta Y. Freshour G. Hahn M.G. Feldman K.A. Benfey P.N. The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsis root Cell 1996 86 423 433 8756724 

  38. 38 Peng J. Carol P. Richard D.E. King K.E. Cowling R.J. Murphy G.P. Harberd N.P. The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses Genes Dev 1997 11 3194 3205 9389651 

  39. 39 Silverstone A.L. Ciampaglio C.N. Sun T. The Arabidopsis RGA gene encodes a transcriptional regulator repressing the gibberellin signal transduction pathway Plant Cell 1998 10 155 169 9490740 

  40. 40 Pysh L.D. Wysocka-Diller J.W. Camilleri C. Bouchez D. Benfey P.N. The GRAS gene family in arabidopsis: Sequence characterization and basic expression analysis of the SCARECROW-LIKE genes Plant J 1999 18 111 119 10341448 

  41. 41 Bolle C. The role of GRAS proteins in plant signal transduction and development Planta 2004 218 683 692 14760535 

  42. 42 Itoh H. Shimada A. Ueguchi-Tanaka M. Kamiya N. Hasegawa Y. Ashikari M. Matsuoka M Overexpression of GRAS protein lacking the DELLA domain confers altered gibberellins responses in rice Plant J 2005 44 669 679 16262715 

  43. 43 Lee M.H. Kim B. Song S.K. Heo J.O. Yu N.I. Lee S. Kim M. Kim D.G. Sohn S.O. Lim C.E. Large-scale analysis of the GRAS gene family in Arabidopsis thaliana Plant Mol. Biol 2008 67 659 670 18500650 

  44. 44 Tian C. Wan P. Sun S. Li J. Chen M. Genome-wide analysis of the GRAS gene family in rice and Arabidopsis Plant Mol. Biol 2004 54 519 532 15316287 

  45. 45 Tong H. Jin Y. Liu W. Li F. Fang J. Yin Y. Qian Q. Zhu L. Chu C. DWARF AND LOW-TILLERING, a new member of the GRAS family, plays positive roles in brassinosteroid signaling in rice Plant J 2009 58 803 816 19220793 

  46. 46 Tanaka N. Niikura S. Takeda K. Relationship between earliness of head formation and developmental characteristics of cabbage ( Brassica oleracea L.) in two different growing seasons, autumn and spring Breed Sci 2008 58 31 37 

  47. 47 Du Z. Zhou X. Ling Y. Zhang Z. Su Z. agriGO: A GO analysis toolkit for the agricultural community Nucleic Acids Res 2010 38 64 70 

  48. 48 Lee J. Song H. Han C.T. Lim Y.P. Chung S.M. Hur Y. Expression characteristics of heat shock protein genes in two comparable inbred lines of Chinese cabbage, Chiifu and Kenshin Genes Genom 2010 32 247 257 

  49. 49 Mishra S.K. Tripp J. Winkelhaus S. Tschiersch B. Theres K. Nover L. Scharf K.D. In the complex family of heat stress transcription factors, HsfA1 has a unique role as master regulator of thermotoloerance in tomato Genes Dev 2002 16 1555 1567 12080093 

  50. 50 Charng Y.Y Liu H.C. Liu N.Y. Chi W.T. Wang C.N. Chang S.H. Wang T.T. A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis Plant Physiol 2007 143 251 262 17085506 

  51. 51 Ogawa D. Yamaguchi K. Nishiuchi T. High-level overexpression of the Arabidopsis HsfA2 gene confers not only increased thermotolerance but also salt/osmotic stress tolerance and enhanced callus growth J. Exp. Bot 2007 58 3373 3383 17890230 

  52. 52 De Maio A. Heat shock proteins: Facts, thoughts, and dreams Shock 1999 11 1 12 9921710 

  53. 53 Simões-Araújo J.L. Rumjanek N.G. Margis-Pinheiro M. Small heat shock proteins genes are differentially expressed in distinct varieties of common bean Braz. J. Plant Physiol 2003 15 33 41 

  54. 54 Ahn Y.J. Claussen K. Zimmerman J.L. Genotypic differences in the heat-shock response and thermotolerance in four potato cultivars Plant Sci 2004 166 901 911 

  55. 55 Lin B.L. Wang J.S. Liu H.C. Chen R.W. Meyer Y. Barakat A. Delseny M. Genomic analysis of the hsp70 superfamily in Arabidopsis thaliana Cell Stress Chaperones 2001 6 201 208 11599561 

  56. 56 Sung D.Y. Vierling E. Guy C.L. Comprehensive expression profile analysis of the Arabidopsis Hsp70 gene family Plant Physiol 2001 126 789 800 11402207 

  57. 57 Torres-Galea P. Huang L.F. Chua N.H. Bolle C. The GRAS protein SCL13 is a positive regulator of phytochrome-dependent red light signaling, but can also modulate phytochrome A responses Mol. Genet. Genomics 2006 276 13 30 16680434 

  58. 58 Trick M. Cheung F. Drou N. Fraser F. Lobenhofer E.K. Hurban P. Magusin A. Town C.D. Bancroft I. A newly-developed community microarray resource for transcriptome profiling in Brassica species enables the confirmation of Brassica-specific expressed sequences BMC Plant Biol 2009 9 50 19426481 

  59. 59 Draghici S. Kulaeva O. Hoff B. Petrov A. Shams S. Tainsky M.A. Noise sampling method: An ANOVA approach allowing robust selection of differentially regulated genes measured by DNA microarrays Bioinformatics 2003 19 1348 1359 12874046 

  60. 60 Thimm O. Bläsing O. Gibon Y. Nagel A. Meyer S. Krüger P. Selbig J. Müller L.A. Rhee S.Y. Stitt M. MAPMAN: A user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes Plant J 2004 37 914 939 14996223 

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로