최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Applied energy, v.191, 2017년, pp.193 - 203
Hanak, Dawid P. (Corresponding author.) , Powell, Dante (Corresponding author.) , Manovic, Vasilije
Abstract Around 43% of the cumulative CO2 emissions from the power sector between 2012 and 2050 could be mitigated through implementation of carbon capture and storage, and utilisation of renewable energy sources. Energy storage technologies can increase the efficiency of energy utilisation and thu...
IEA. Carbon capture and storage: The solution for deep emissions reductions. Paris, France: IEA Publications; 2015.
IEA. Energy Technology Perspectives 2015. Paris, France: IEA Publications; 2015.
IEA. Energy technology perspectives 2012: Pathways to a clean energy system. Paris, France: IEA Publications; 2012.
Twidell vol. 2 2006
Renew Sustain Energy Rev Pardo 32 591 2014 10.1016/j.rser.2013.12.014 A review on high temperature thermochemical heat energy storage
IEEE Trans Power Syst Jiang 27 800 2012 10.1109/TPWRS.2011.2169817 Robust unit commitment with wind power and pumped storage hydro
IEEE Trans Power Deliv Singh 26 307 2011 10.1109/TPWRD.2010.2081384 Grid interconnection of renewable energy sources at the distribution level with power-quality improvement features
Appl Energy Hu 112 747 2013 10.1016/j.apenergy.2012.12.001 Peak and off-peak operations of the air separation unit in oxy-coal combustion power generation systems
Appl Energy Arias 132 127 2014 10.1016/j.apenergy.2014.06.074 Oxy-fired fluidized bed combustors with a flexible power output using circulating solids for thermal energy storage
Renewable Energy Foundation. Notes on Wind Farm Constraint Payments 2016. <http://bit.ly/29KjjaS>.
IEA. Technology Roadmap: Energy storage. Paris, France: IEA Publications; 2014.
Appl Energy Antonelli 2016 Liquid air energy storage: potential and challenges of hybrid power plants
Proc Inst Mech Eng Smith 191 289 1977 10.1243/PIME_PROC_1977_191_035_02 Storage of electrical energy using supercritical liquid air
AIChE J Zhang 61 1547 2015 10.1002/aic.14730 Air separation with cryogenic energy storage: optimal scheduling considering electric energy and reserve markets
Renew Sustain Energy Rev Mahlia 33 532 2014 10.1016/j.rser.2014.01.068 A review of available methods and development on energy storage: technology update
Appl Energy Kantharaj 157 152 2015 10.1016/j.apenergy.2015.07.076 Compressed air energy storage with liquid air capacity extension
Renew Energy Zhang 99 682 2016 10.1016/j.renene.2016.07.048 Thermodynamic analysis of a novel energy storage system with carbon dioxide as working fluid
Energy Environ Sci Hanak 9 971 2016 10.1039/C5EE02950C Calcium looping with inherent energy storage for decarbonisation of coal-fired power plant
Energy Convers Manage Jin 106 782 2015 10.1016/j.enconman.2015.09.077 Plantwide control and operating strategy for air separation unit in oxy-combustion power plants
Appl Energy Morgan 137 845 2015 10.1016/j.apenergy.2014.07.109 Liquid air energy storage - analysis and first results from a pilot scale demonstration plant
Prog Nat Sci Chen 19 291 2009 10.1016/j.pnsc.2008.07.014 Progress in electrical energy storage system: a critical review
Appl Energy Luo 137 511 2015 10.1016/j.apenergy.2014.09.081 Overview of current development in electrical energy storage technologies and the application potential in power system operation
IET Renew Power Gener Ummels 2 34 2008 10.1049/iet-rpg:20070056 Integration of large-scale wind power and use of energy storage in the Netherlands’ electricity supply
Energy Policy Tuohy 39 1965 2011 10.1016/j.enpol.2011.01.026 Pumped storage in systems with very high wind penetration
Appl Therm Eng Perrin 74 75 2015 10.1016/j.applthermaleng.2014.03.074 Oxycombustion for coal power plants: advantages, solutions and projects
Energy Environ Sci. Mac Dowell 3 1645 2010 10.1039/c004106h An overview of CO2 capture technologies
Appl Energy Li 86 202 2009 10.1016/j.apenergy.2008.05.006 Impurity impacts on the purification process in oxy-fuel combustion based CO2 capture and storage system
Appl Energy Yin 162 742 2016 10.1016/j.apenergy.2015.10.149 Oxy-fuel combustion of pulverized fuels: combustion fundamentals and modeling
Fuel Process Technol Smith 70 115 2001 10.1016/S0378-3820(01)00131-X A review of air separation technologies and their integration with energy conversion processes
Prog Energy Combust Sci Buhre 31 283 2005 10.1016/j.pecs.2005.07.001 Oxy-fuel combustion technology for coal-fired power generation
Energy Convers Manage Romeo 49 2809 2008 10.1016/j.enconman.2008.03.022 Oxyfuel carbonation/calcination cycle for low cost CO2 capture in existing power plants
Chem Eng Technol Strohle 32 435 2009 10.1002/ceat.200800569 Simulation of the carbonate looping process for post-combustion CO2 capture from a coal-fired power plant
Energy Proc Darde 1 527 2009 10.1016/j.egypro.2009.01.070 Air separation and flue gas compression and purification units for oxy-coal combustion systems
Energy Environ Sci Boot-Handford 7 130 2014 10.1039/C3EE42350F Carbon capture and storage update
Energy Fuels Fu 27 7138 2013 10.1021/ef400867d Exergy analysis and heat integration of a coal-based oxy-combustion power plant
Appl Therm Eng Perrin 74 75 2014 10.1016/j.applthermaleng.2014.03.074 Oxycombustion for coal power plants: advantages, solutions and projects
Energy Fuels Gao 29 6656 2015 10.1021/acs.energyfuels.5b01421 Potassium carbonate slurry-based CO2 capture technology
National Grid. Historical Demand Data; 2016. <http://ngrid.com/1lHGBAy>.
Appl Energy Li 113 1710 2014 10.1016/j.apenergy.2013.08.077 Load shifting of nuclear power plants using cryogenic energy storage technology
Environ Sci Technol Rao 36 4467 2002 10.1021/es0158861 A technical, economic, and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control
Int J Greenh Gas Control Rubin 10 181 2012 10.1016/j.ijggc.2012.06.004 Understanding the pitfalls of CCS cost estimates
Int J Greenh Gas Control Rubin 40 378 2015 10.1016/j.ijggc.2015.05.018 The cost of CO2 capture and storage
Metz 2005 IPCC special report on carbon dioxide capture and storage
Energy Fuels Hanak 29 3833 2015 10.1021/acs.energyfuels.5b00591 Evaluation and modeling of part-load performance of coal-fired power plant with postcombustion CO2 capture
AspenTech. Aspen Plus IGCC Model. Burlington, MA, USA: Aspen Technology, Inc.; 2011.
Hornick 2002 Tampa Electric Polk power station integrated gasification combined cycle projet - Final technical report. vol. DE-FC-21-9
Linde AG. History and technological progress. Cryogenic air separation. Pullach, Germany: Linde AG, Engineering Division; 2013.
Fuel Posch 101 254 2012 10.1016/j.fuel.2011.07.039 Optimization of CO2 compression and purification units (CO2CPU) for CCS power plants
Anantharaman R, Bollard O, Booth N, van Dorst E, Ekstrom C, Sanchez Fernandes E, et al. CArbon-free Electricity by SEWGS: Advanced materials, Reactor-, and process design. D 4.9 European best practice guidelines for assessment of CO2 capture technologies. vol. 213206 FP7. Politecnico di Milano - Alstom UK; 2011.
Cooke 1983 Modelling of off-design multistage turbine pressures by Stodola’s ellipse
Salisbury 1950 Steam turbines and their cycles
Knopf 2012 Modeling, analysis and optimization of process and energy systems
Environ Sci Technol Abanades 41 5523 2007 10.1021/es070099a Cost structure of a postcombustion CO2 capture system using CaO
Energy Environ Sci Zhao 6 25 2013 10.1039/C2EE22890D A review of techno-economic models for the retrofitting of conventional pulverised-coal power plants for post-combustion capture (PCC) of CO2
Int J Greenh Gas Control Yang 4 603 2010 10.1016/j.ijggc.2010.01.004 Integration and evaluation of a power plant with a CaO-based CO2 capture system
Perry vol. 8 2007
NETL. Technology readiness assessment - overview. Pathway for readying the next generation of affordable clean energy technology - Carbon Capture, Utilization, and Storage (CCUS) FutureGen Alliance FutureGen Alliance FutureGen Alliance. Pittsburgh, PA, USA: National Energy Technology Laboratory; 2012.
Marion J, Nsakala N, McWhinnie R. Greenhouse gas emissions control by oxygen firing in circulating fluidized bed boilers: Phase 1-A preliminary systems evaluation. vol. 2; 2003.
Energy Fuels Martinez 28 2059 2014 10.1021/ef402487e Operation of a mixing seal valve in calcium looping for CO2 capture
Energy Proc Romano 37 142 2013 10.1016/j.egypro.2013.05.095 Process simulation of Ca-looping processes: review and guidelines
Energy Proc Mantripragada 63 2199 2013 10.1016/j.egypro.2014.11.239 Calcium looping cycle for CO2 capture - performance, cost and feasibility analysis
Comput Chem Eng Mac Dowell 74 169 2015 10.1016/j.compchemeng.2015.01.006 The multi-period optimisation of an amine-based CO2 capture process integrated with a super-critical coal-fired power station for flexible operation
Ind Eng Chem Res Miller 47 2008 10.1021/ie070975t Improving agility of cryogenic air separation plants
Ind Eng Chem Res Miller 47 2008 10.1021/ie070593n Economic incentive for intermittent operation of air separation plants with variable power costs
Energy Environ Sci Hanak 8 2199 2015 10.1039/C5EE01228G A review of developments in pilot plant testing and modelling of calcium looping process for CO2 capture from power generation systems
Energy Hanak 102 343 2015 10.1016/j.energy.2016.02.079 Calcium looping with supercritical CO2 cycle for decarbonisation of coal-fired power plant
Appl Energy Perejon 162 787 2016 10.1016/j.apenergy.2015.10.121 The calcium-looping technology for CO2 capture: on the important roles of energy integration and sorbent behavior
Energy Proc Perrin 63 524 2014 10.1016/j.egypro.2014.11.057 Latest performances and improvement perspective of oxycombustion for carbon capture on coal power plants
Prog Energy Combust Sci Toftegaard 36 581 2010 10.1016/j.pecs.2010.02.001 Oxy-fuel combustion of solid fuels
Fuel Cormos 169 50 2016 10.1016/j.fuel.2015.12.005 Oxy-combustion of coal, lignite and biomass: a techno-economic analysis for a large scale carbon capture and storage (CCS) project in Romania
IEAGHG. Oxy combustion processes for CO2 capture from power plants. Cheltenham, UK: IEA Greenhouse Gas R&D Programme; 2005.
Energy Environ Sci Barbour 5 5425 2012 10.1039/C2EE02419E Towards an objective method to compare energy storage technologies: development and validation of a model to determine the upper boundary of revenue available from electrical price arbitrage
DECC. Updated energy and emissions projections 2014. London, UK: Department of Energy and Climate Change; 2014.
EIA. Energy market and economic impacts of the American Power Act of 2010. Washington, DC, USA: U.S. Energy Information Administration; 2010.
Appl Energy Adams 178 681 2016 10.1016/j.apenergy.2016.06.087 Off-design point modelling of a 420MW CCGT power plant integrated with an amine-based post-combustion CO2 capture and compression process
Energy Hammond 36 975 2011 10.1016/j.energy.2010.12.012 Techno-economic appraisal of fossil-fuelled power generation systems with carbon dioxide capture and storage
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
저자가 공개 리포지터리에 출판본, post-print, 또는 pre-print를 셀프 아카이빙 하여 자유로운 이용이 가능한 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.