$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

A solution-processed quaternary oxide system obtained at low-temperature using a vertical diffusion technique 원문보기

Scientific reports, v.7, 2017년, pp.43216 -   

Yoon, Seokhyun (School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro , Seodaemun-gu, Seoul 120-749, Republic of Korea) ,  Kim, Si Joon (School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro , Seodaemun-gu, Seoul 120-749, Republic of Korea) ,  Tak, Young Jun (School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro , Seodaemun-gu, Seoul 120-749, Republic of Korea) ,  Kim, Hyun Jae (School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro , Seodaemun-gu, Seoul 120-749, Republic of Korea)

Abstract AI-Helper 아이콘AI-Helper

We report a method for fabricating solution-processed quaternary In-Ga-Zn-O (IGZO) thin-film transistors (TFTs) at low annealing temperatures using a vertical diffusion technique (VDT). The VDT is a deposition process for spin-coating binary and ternary oxide layers consecutively and annealing at on...

참고문헌 (40)

  1. Usui T. S. S. & Sekiya M. XeCl Excimer laser annealing used in the fabrication of poly-Si TFT’s . IEEE Electron Device Lett . 5 , 276 – 278 ( 1986 ). 

  2. Kang M. K. , Kim S. J. & Kim H. J. Fabrication of high performance thin-film transistors via pressure-induced nucleation . Scientic Rep . 4 , 6858 , doi: 10.1038/srep06858 ( 2014 ). 

  3. Nomura K. . Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor . Science 300 , 1269 – 1272 ( 2003 ). 12764192 

  4. Nomura K. . Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors . Nature 432 , 488 – 492 ( 2004 ). 15565150 

  5. Tak Y. J. . Reduction of activation temperature at 150 °C for IGZO films with improved electrical performance via UV-thermal treatment . J. Inf. Disp . 17 , 73 – 78 ( 2016 ). 

  6. Kamiya T. . Material characteristics and applications of transparent amorphous oxide semiconductors . NPG Asia Mater . 2 , 15 – 22 ( 2010 ). 

  7. Fortunato E. . Oxide semiconductor thin-film transistors: A Review of Recent Advances . Adv. Mater. 24 , 2945 – 2986 ( 2012 ). 22573414 

  8. Bhoolokam A. . Analysis of frequency dispersion in amorphous In-Ga-Zn-O thin-film transistor . J. Inf. Disp . 16 , 31 – 36 ( 2015 ). 

  9. Kim S. J. . Review of solution-processed oxide thin-film transistors . Jpn. J. Appl. Phys. 53 , 02BA02 , doi: http://dx.doi.org/10.7567/JJAP.53.02BA02 ( 2014 ). 

  10. Jeong S. . Impact of metal salt precursor on low-temperature annealed solution-derived Ga-doped In 2 O 3 semiconductor for thin-film transistors . J. Phys. Chem. C 115 , 11773 – 11780 ( 2011 ). 

  11. Jeong W. H. . High-performance oxide thin-film transistors using a volatile nitrate precursor for low-temperature solution process . IEEE Electron Device Lett . 33 , 68 – 70 ( 2012 ). 

  12. Meyers S. T. . Aqueous inorganic inks for low-temperature fabrication of ZnO TFTs . J. Am. Chem. Soc. 130 , 17603 – 17609 ( 2008 ). 19053193 

  13. Theissmann R. . High performance low temperature solution-processed zinc oxide thin film transistor . Thin Solid Films 519 , 5623 – 5628 ( 2011 ). 

  14. Hwang Y. H. . An aqueous route for the fabrication of low-temperature-processable oxide flexible transparent thin-film transistors on plastic substrates . NPG Asia Mater . 5 , E45 , doi: 10.1038/am.2013.11 ( 2013 ). 

  15. Park S. Y. . Low-temperature, solution-processed and alkali metal doped ZnO for high-performance thin-film transistors . Adv. Mater. 24 , 834 – 838 ( 2012 ). 22228295 

  16. Kim M. G. . Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing . Nature Mater . 10 , 382 – 388 ( 2011 ). 21499311 

  17. Cho S. Y. . Novel zinc oxide inks with zinc oxide nanoparticles for low-temperature, solution-processed thin-film transistors . Chem. Mater. 24 , 3517 – 3524 ( 2012 ). 

  18. Rim Y. S. . Simultaneous modification of pyrolysis and densification for low-temperature solution-processed flexible oxide thin-film transistors . J. Mater. Chem. 22 , 12491 – 12497 ( 2012 ). 

  19. Yoon S. . Study of nitrogen high-pressure annealing on InGaZnO thin-film transistors . ACS Appl. Mater. Interfaces 6 , 13496 – 13501 ( 2014 ). 25078328 

  20. Kim S. J. . Low-temperature solution-processed ZrO 2 gate insulators for thin-film transistors using high-pressure annealing . Electrochem. Solid-State Lett . 14 , E35 – E37 ( 2011 ). 

  21. Hwang Y. H. . Ultraviolet photo-annealing process for low temperature processed sol-gel zinc tin oxide thin film transistors . Electrochem. Solid-State Lett . 15 , H91 – H93 ( 2012 ). 

  22. Seo S. J. . Postannealing process for low temperature processed sol–gel zinc tin oxide thin film transistors . Electrochem. Solid-State Lett . 13 , H357 – H359 ( 2010 ). 

  23. Kim Y. H. . Flexible metal-oxide devices made by room-temperature photochemical activation of sol-gel films . Nature 489 , 128 – 132 ( 2012 ). 22955624 

  24. Han S. Y. . Low-temperature, high-performance, solution-processed indium oxide thin-film transistors . J. Am. Chem. Soc. 133 , 5166 – 5169 ( 2011 ). 21417268 

  25. Jun T. . High-performance low-temperature solution-processable ZnO thin film transistors by microwave-assisted annealing . J. Mater. Chem. 21 , 1102 – 1108 ( 2011 ). 

  26. Song K. . Low-temperature soluble InZnO thin film transistors by microwave annealing . J. Crys. Growth 326 , 23 – 27 ( 2011 ). 

  27. Kim H. S. . Low-temperature solution-processed amorphous indium tin oxide field-effect transistors . J. Am. Chem. Soc. 131 , 10826 – 10827 ( 2009 ). 19603806 

  28. Bong H. . High-mobility low-temperature ZnO transistors with low-voltage operation . Appl. Phys. Lett. 96 , 192115 , doi: 10.1063/1.3428357 ( 2010 ). 

  29. Park J. H. . Low-temperature, high-performance solution-processed thin-film transistors with peroxo-zirconium oxide dielectric . ACS Appl. Mater. Interfaces 5 , 410 – 417 ( 2013 ). 23267443 

  30. Kim K. M. . Low-temperature solution processing of AlInZnO/InZnO dual-channel thin-film transistors . IEEE Electron Device Lett . 32 , 1242 – 1244 ( 2011 ). 

  31. Kim G. H. . Effect of indium composition ratio on solution-processed nanocrystalline InGaZnO thin film transistors . Appl. Phys. Lett. 94 , 233501 , doi: http://dx.doi.org/10.1063/1.3151827 ( 2009 ). 

  32. Hosono H. Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application . J. Non-Cryst. Solids 352 , 851 – 858 ( 2006 ). 

  33. Kim G. H. . Electrical characteristics of solution-processed InGaZnO thin film transistors depending on Ga concentration . Phys. Status Solidi A 207 , 1677 – 1679 ( 2010 ). 

  34. Kamiya T. . Electronic structure of oxygen deficient amorphous oxide semiconductor a-InGaZnO 4−x : Optical analyses and first-principle calculations . Phys. Status Solidi C 5 , 3098 – 3100 ( 2008 ). 

  35. Noh H. K. . Electronic structure of oxygen-vacancy defects in amorphous In-Ga-Zn-O semiconductors . Phys. Rev. B 84 , 115205 , doi: 10.1103/PhysRevB.84.115205 ( 2011 ). 

  36. Xiaoming H. . Enhaced bias stress stability of a-InGaZnO thin film transistors by inserting an ultra-thin interfacial InGaZnO:N layer . Appl. Phys. Lett. 102 , 193505 , doi: http://dx.doi.org/10.1063/1.4805354 ( 2013 ). 

  37. Galindo R. E. . Towards nanometric resolution in multilayer depth profiling: a comparative study of RBS, SIMS, XPS and GDOES . Anal. Bioanal. Chem. 396 , 2725 – 2740 ( 2010 ). 20062981 

  38. Sun J. . Improved mobility and conductivity of an Al 2 O 3 incorporated indium zinc oxide system . J. Appl. Phys. 110 , 023709 , doi: http://dx.doi.org/10.1063/1.3605547 ( 2011 ). 

  39. Kim G. H. . Electrical characteristics of solution-processed InGaZnO thin film transistors depending on Ga concentration . Phys. Status. Solidi A . 207 , 1677 – 1679 ( 2010 ). 

  40. Zan H.–W. . Achieving high field-effect mobility in amorphous indium-gallium-zinc-oxide by capping a strong reduction layer . Adv. Mater. 24 , 3509 – 3514 ( 2012 ). 22678659 

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로