$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Evaluation of titanium disilicide/copper Schottky gate for AlGaN/GaN high electron mobility transistors

Semiconductor science and technology, v.32 no.3, 2017년, pp.035012 -   

Yoon, Seonno (School of Integrated Technology, Yonsei University, Incheon 21983, Korea) ,  Lee, Seung Min (School of Integrated Technology, Yonsei University, Incheon 21983, Korea) ,  Kim, Jeyoung (Department of Electronics Engineering, Chungnam National University, Daejeon, Korea) ,  Lee, Hi-Deok (Department of Electronics Engineering, Chungnam National University, Daejeon, Korea) ,  Cha, Ho-Young (School of Electrical and Electronic Engineering, Hongik University, Mapo-gu, Seoul 04066, Korea) ,  Oh, Jungwoo (School of Integrated Technology, Yonsei University, Incheon 21983, Korea)

Abstract AI-Helper 아이콘AI-Helper

Titanium disilicide/copper (TiSi2/Cu) gate AlGaN/GaN high electron mobility transistors (HEMTs) with low gate leakage current are demonstrated. The TiSi2/Cu gate devices demonstrate electrical characteristics that are comparable to those of conventional Ni/Au gate devices. At gate voltage of −...

참고문헌 (30)

  1. [1] Mishra U K, Shen L, Kazior T E and Wu Y-F 2008 GaN-based RF power devices and amplifiers Proc. IEEE 96 287–305 10.1109/JPROC.2007.911060 GaN-based RF power devices and amplifiers Mishra U K, Shen L, Kazior T E and Wu Y-F Proc. IEEE 0018-9219 96 2008 287 305 

  2. [2] Wakejima A et al 2015 Normally off AlGaN/GaN HEMT on Si substrate with selectively dry-etched recessed gate and polarization-charge-compensation δ-doped GaN cap layer Appl. Phys. Express 8 026502 10.7567/APEX.8.026502 Normally off AlGaN/GaN HEMT on Si substrate with selectively dry-etched recessed gate and polarization-charge-compensation δ-doped GaN cap layer Wakejima A et al Appl. Phys. Express 1882-0786 8 2 026502 2015 

  3. [3] Lee M-S, Kim D, Eom S, Cha H-Y and Seo K-S 2014 A compact 30 W AlGaN/GaN HEMTs on silicon substrate with output power density of 8.1 Wmm−1 at 8 GHz IEEE Electron Device Lett. 35 995–7 10.1109/LED.2014.2343233 A compact 30 W AlGaN/GaN HEMTs on silicon substrate with output power density of 8.1 Wmm−1 at 8 GHz Lee M-S, Kim D, Eom S, Cha H-Y and Seo K-S IEEE Electron Device Lett. 0741-3106 35 2014 995 997 

  4. [4] Saito W et al 2003 High breakdown voltage AlGaN–GaN power-HEMT design and high current density switching behavior IEEE Trans. Electron Devices 50 2528–31 10.1109/TED.2003.819248 High breakdown voltage AlGaN–GaN power-HEMT design and high current density switching behavior Saito W et al IEEE Trans. Electron Devices 0018-9383 50 2003 2528 2531 

  5. [5] Ofuonye B, Lee J, Yan M, Sun C, Zuo J-M and Adesida I 2014 Electrical and microstructural properties of thermally annealed Ni/Au and Ni/Pt/Au Schottky contacts on AlGaN/GaN heterostructures Semicond. Sci. Technol. 29 095005 10.1088/0268-1242/29/9/095005 Electrical and microstructural properties of thermally annealed Ni/Au and Ni/Pt/Au Schottky contacts on AlGaN/GaN heterostructures Ofuonye B, Lee J, Yan M, Sun C, Zuo J-M and Adesida I Semicond. Sci. Technol. 0268-1242 29 9 095005 2014 

  6. [6] Jung H et al 2009 Reliability behavior of GaN HEMTs related to Au diffusion at the Schottky interface Phys. Status Solidi c 6 S976–9 10.1002/pssc.200880819 Reliability behavior of GaN HEMTs related to Au diffusion at the Schottky interface Jung H et al Phys. Status Solidi 1610-1634 6 c 2009 S976 S979 

  7. [7] Miura N et al 2004 Thermal annealing effects on Ni/Au based Schottky contacts on n-GaN and AlGaN/GaN with insertion of high work function metal Solid-State Electron. 48 689–95 10.1016/j.sse.2003.07.006 Thermal annealing effects on Ni/Au based Schottky contacts on n-GaN and AlGaN/GaN with insertion of high work function metal Miura N et al Solid-State Electron. 0038-1101 48 2004 689 695 

  8. [8] Seo D W et al 2014 600V-18A GaN power MOS-HEMTs on 150 mm Si substrates with Au-free electrodes IEEE Electron Device Lett. 35 446–8 10.1109/LED.2014.2304587 600V-18A GaN power MOS-HEMTs on 150 mm Si substrates with Au-free electrodes Seo D W et al IEEE Electron Device Lett. 0741-3106 35 2014 446 448 

  9. [9] Tham W, Bera L, Ang D, Dolmanan S, Bhat T and Tripathy S 2015 AlGa1–xN/GaN MISHEMTs with a common gold-free metal-stack for source/drain/gate IEEE Electron Device Lett. 36 1291–4 10.1109/LED.2015.2491362 AlGa1–xN/GaN MISHEMTs with a common gold-free metal-stack for source/drain/gate Tham W, Bera L, Ang D, Dolmanan S, Bhat T and Tripathy S IEEE Electron Device Lett. 0741-3106 36 2015 1291 1294 

  10. [10] Esposto M, Di Lecce V, Bonaiuti M and Chini A 2013 The influence of interface states at the Schottky junction on the large signal behavior of copper-gate GaN HEMTs J. Electron. Mater. 42 15–20 10.1007/s11664-012-2268-2 The influence of interface states at the Schottky junction on the large signal behavior of copper-gate GaN HEMTs Esposto M, Di Lecce V, Bonaiuti M and Chini A J. Electron. Mater. 42 2013 15 20 

  11. [11] Ao J-P, Kikuta D, Kubota N, Naoi Y and Ohno Y 2003 Copper gate AlGaN/GaN HEMT with low gate leakage current IEEE Electron Device Lett. 24 500–2 10.1109/LED.2003.815158 Copper gate AlGaN/GaN HEMT with low gate leakage current Ao J-P, Kikuta D, Kubota N, Naoi Y and Ohno Y IEEE Electron Device Lett. 0741-3106 24 2003 500 502 

  12. [12] Sun H, Alt A R and Bolognesi C 2007 Submicrometer copper T-gate AlGaN/GaN HFETs: the gate metal stack effect IEEE Electron Device Lett. 28 350–3 10.1109/LED.2007.895380 Submicrometer copper T-gate AlGaN/GaN HFETs: the gate metal stack effect Sun H, Alt A R and Bolognesi C IEEE Electron Device Lett. 0741-3106 28 2007 350 353 

  13. [13] Lin Y-C, Chang C-H, Li F-M, Hsu L-H and Chang E Y 2013 Evaluation of TiN/Cu gate metal scheme for AlGaN/GaN high-electron-mobility transistor application Appl. Phys. Express 6 091003 10.7567/APEX.6.091003 Evaluation of TiN/Cu gate metal scheme for AlGaN/GaN high-electron-mobility transistor application Lin Y-C, Chang C-H, Li F-M, Hsu L-H and Chang E Y Appl. Phys. Express 1882-0786 6 9 091003 2013 

  14. [14] Hsieh T-E et al 2015 GaN high-electron-mobility transistor with WN x/Cu gate for high-power applications J. Electron. Mater. 44 4700–5 10.1007/s11664-015-4118-5 GaN high-electron-mobility transistor with WN x/Cu gate for high-power applications Hsieh T-E et al J. Electron. Mater. 44 2015 4700 4705 

  15. [15] Yoon S, Song Y, Lee S M, Lee H-D and Oh J 2016 Localized TiSi and TiN phases in Si/Ti/Al/Cu ohmic contacts to AlGaN/GaN heterostructures Semicond. Sci. Technol. 31 055002 10.1088/0268-1242/31/5/055002 Localized TiSi and TiN phases in Si/Ti/Al/Cu ohmic contacts to AlGaN/GaN heterostructures Yoon S, Song Y, Lee S M, Lee H-D and Oh J Semicond. Sci. Technol. 0268-1242 31 5 055002 2016 

  16. [16] Raaijmakers I J, van Ommen A H and Reader A H 1989 Crystallization of amorphous Ti–Si alloy thin films: microstructure and resistivity J. Appl. Phys. 65 3896–906 10.1063/1.343353 Crystallization of amorphous Ti–Si alloy thin films: microstructure and resistivity Raaijmakers I J, van Ommen A H and Reader A H J. Appl. Phys. 65 1989 3896 3906 

  17. [17] Lasky J B, Nakos J S, Cain O J and Geiss P J 1991 Comparison of transformation to low-resistivity phase and agglomeration of TiSi2 and CoSi2 IEEE Trans. Electron Devices 38 262–9 10.1109/16.69904 Comparison of transformation to low-resistivity phase and agglomeration of TiSi2 and CoSi2 Lasky J B, Nakos J S, Cain O J and Geiss P J IEEE Trans. Electron Devices 0018-9383 38 1991 262 269 

  18. [18] Okamoto M et al 2013 An ohmic contact process for AlGaN/GaN structures using TiSi2 electrodes 2013 IEEE Workshop on Wide Bandgap Power Devices and Applications (WiPDA) (Piscataway, NJ: IEEE) pp 159–61 10.1109/WiPDA.2013.6695586 An ohmic contact process for AlGaN/GaN structures using TiSi2 electrodes Okamoto M et al 2013 IEEE Workshop on Wide Bandgap Power Devices and Applications (WiPDA) 2013 159 161 

  19. [19] Kordoš P, Bernát J, Marso M, Lüth H, Rampazzo F, Tamiazzo G, Pierobon R and Meneghesso G 2005 Influence of gate-leakage current on drain current collapse of unpassivated GaN/AlGaN/GaN high electron mobility transistors Appl. Phys. Lett. 86 253511 10.1063/1.1953873 Influence of gate-leakage current on drain current collapse of unpassivated GaN/AlGaN/GaN high electron mobility transistors Kordoš P, Bernát J, Marso M, Lüth H, Rampazzo F, Tamiazzo G, Pierobon R and Meneghesso G Appl. Phys. Lett. 86 253511 2005 

  20. [20] Guowang L, Zimmermann T, Cao Y, Lian C, Xing X, Wang R, Fay P, Xing H G and Jena D 2010 Threshold voltage control in HEMTs by work-function engineering IEEE Electron Device Lett. 31 954–6 10.1109/LED.2010.2052912 Threshold voltage control in HEMTs by work-function engineering Guowang L, Zimmermann T, Cao Y, Lian C, Xing X, Wang R, Fay P, Xing H G and Jena D IEEE Electron Device Lett. 0741-3106 31 2010 954 956 

  21. [21] Cheung S K and Cheung N W 1986 Extraction of Schottky diode parameters from forward current–voltage characteristics Appl. Phys. Lett. 49 85–7 10.1063/1.97359 Extraction of Schottky diode parameters from forward current–voltage characteristics Cheung S K and Cheung N W Appl. Phys. Lett. 49 1986 85 87 

  22. [22] Miura N, Nanjo T, Suita M, Oishi T, Abe Y, Ozeki T, Ishikawa H, Egawa T and Jimbo T 2004 Thermal annealing effects on Ni/Au based Schottky contacts on n-GaN and AlGaN/GaN with insertion of high work function metal Solid-State Electron. 48 689–95 10.1016/j.sse.2003.07.006 Thermal annealing effects on Ni/Au based Schottky contacts on n-GaN and AlGaN/GaN with insertion of high work function metal Miura N, Nanjo T, Suita M, Oishi T, Abe Y, Ozeki T, Ishikawa H, Egawa T and Jimbo T Solid-State Electron. 0038-1101 48 2004 689 695 

  23. [23] Benedict O, Jaseun L, Minjun Y, Changwoo S, Jian-Min Z and Ilesanmi A 2014 Electrical and microstructural properties of thermally annealed Ni/Au and Ni/Pt/Au Schottky contacts on AlGaN/GaN heterostructures Semicond. Sci. Technol. 29 095005 10.1088/0268-1242/29/9/095005 Electrical and microstructural properties of thermally annealed Ni/Au and Ni/Pt/Au Schottky contacts on AlGaN/GaN heterostructures Benedict O, Jaseun L, Minjun Y, Changwoo S, Jian-Min Z and Ilesanmi A Semicond. Sci. Technol. 0268-1242 29 9 095005 2014 

  24. [24] Jessen G H et al 2003 Gate optimization of AlGaN/GaN HEMTs using WSi, Ir, Pd, and Ni Schottky contacts 25th Ann. Tech. Dig. 2003 Gallium Arsenide Integrated Circuit (GaAs IC) Symposium, 2003 (Piscataway, NJ: IEEE) pp 277–9 10.1109/GAAS.2003.1252410 Gate optimization of AlGaN/GaN HEMTs using WSi, Ir, Pd, and Ni Schottky contacts Jessen G H et al 25th Ann. Tech. Dig. 2003 Gallium Arsenide Integrated Circuit (GaAs IC) Symposium, 2003 2003 277 279 

  25. [25] Oka T and Nozawa T 2008 AlGaN/GaN recessed MIS-gate HFET with high-threshold-voltage normally-off operation for power electronics applications IEEE Electron Device Lett. 29 668–70 10.1109/LED.2008.2000607 AlGaN/GaN recessed MIS-gate HFET with high-threshold-voltage normally-off operation for power electronics applications Oka T and Nozawa T IEEE Electron Device Lett. 0741-3106 29 2008 668 670 

  26. [26] Cai Y, Zhou Y, Chen K J and Lau K M 2005 High-performance enhancement-mode AlGaN/GaN HEMTs using fluoride-based plasma treatment IEEE Electron Device Lett. 26 435–7 10.1109/LED.2005.851122 High-performance enhancement-mode AlGaN/GaN HEMTs using fluoride-based plasma treatment Cai Y, Zhou Y, Chen K J and Lau K M IEEE Electron Device Lett. 0741-3106 26 2005 435 437 

  27. [27] Elsayed M, Krause-Rehberg R, Moutanabbir O, Anwand W, Richter S and Hagendorf C 2011 Cu diffusion-induced vacancy-like defects in freestanding GaN New J. Phys. 13 013029 10.1088/1367-2630/13/1/013029 Cu diffusion-induced vacancy-like defects in freestanding GaN Elsayed M, Krause-Rehberg R, Moutanabbir O, Anwand W, Richter S and Hagendorf C New J. Phys. 1367-2630 13 1 013029 2011 

  28. [28] Yoon S, Bang J, Song Y and Oh J 2015 Microstructural characterization of Au-free Si/Ti/Al/Cu ohmic contacts in an AlGaN/GaN heterostructure Thin Solid Films 590 335–9 10.1016/j.tsf.2015.02.065 Microstructural characterization of Au-free Si/Ti/Al/Cu ohmic contacts in an AlGaN/GaN heterostructure Yoon S, Bang J, Song Y and Oh J Thin Solid Films 0040-6090 590 2015 335 339 

  29. [29] Istratov A, Flink C, Hieslmair H, McHugo S and Weber E 2000 Diffusion, solubility and gettering of copper in silicon Mater. Sci. Eng. B 72 99–104 10.1016/S0921-5107(99)00514-0 Diffusion, solubility and gettering of copper in silicon Istratov A, Flink C, Hieslmair H, McHugo S and Weber E Mater. Sci. Eng. 0921-5107 72 B 2000 99 104 

  30. [30] Garg M, Kumar A, Nagarajan S, Sopanen M and Singh R 2016 Investigation of significantly high barrier height in Cu/GaN Schottky diode AIP Adv. 6 015206 10.1063/1.4939936 Investigation of significantly high barrier height in Cu/GaN Schottky diode Garg M, Kumar A, Nagarajan S, Sopanen M and Singh R AIP Adv. 6 015206 2016 

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로