$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Abstract AI-Helper 아이콘AI-Helper

Abstract Heart failure still represents the leading cause of death worldwide. Novel strategies using stem cells and growth factors have been investigated for effective cardiac tissue regeneration and heart function recovery. However, some major challenges limit their translation to the clinic. Rece...

Keyword

참고문헌 (212)

  1. Interact. Cardiovasc. Thorac. Surg. Abdalla 17 767 2013 10.1093/icvts/ivt277 Hyaluronic acid-based hydrogel induces neovascularization and improves cardiac function in a rat model of myocardial infarction 

  2. Proc. Natl. Acad. Sci. U. S. A. Amado 102 11474 2005 10.1073/pnas.0504388102 Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction 

  3. Ther. Deliv. Arnfast 5 691 2014 10.4155/tde.14.38 Design and processing of nanogels as delivery systems for peptides and proteins 

  4. Stem Cells Int. Assunção-Silva 2015 948040 2015 10.1155/2015/948040 Hydrogels and cell based therapies in spinal cord injury regeneration 

  5. Int. J. Artif. Organs Asti 37 187 2014 10.5301/ijao.5000307 Natural and synthetic biodegradable polymers: different scaffolds for cell expansion and tissue formation 

  6. J. Thorac. Cardiovasc. Surg. Atluri 148 1090 2014 10.1016/j.jtcvs.2014.06.038 Tissue-engineered, hydrogel-based endothelial progenitor cell therapy robustly revascularizes ischemic myocardium and preserves ventricular function 

  7. Macromol. Biosci. Awada 14 679 2014 10.1002/mabi.201300486 Dual delivery of vascular endothelial growth factor and hepatocyte growth factor coacervate displays strong angiogenic effects 

  8. Biomaterials Awada 82 94 2016 10.1016/j.biomaterials.2015.12.025 Towards comprehensive cardiac repair and regeneration after myocardial infarction: aspects to consider and proteins to deliver 

  9. Molecules Barrett 14 4022 2009 10.3390/molecules14104022 Design and applications of biodegradable polyester tissue scaffolds based on endogenous monomers found in human metabolism 

  10. Adv. Healthcare Mater. Bastings 3 70 2014 10.1002/adhm.201300076 A fast pH-switchable and self-healing supramolecular hydrogel carrier for guided: local catheter injection in the infarcted myocardium 

  11. Cell Death Dis. Bearzi 5 e1053 2014 10.1038/cddis.2014.12 PlGF-MMP9-engineered iPS cells supported on a PEG-fibrinogen hydrogel scaffold possess an enhanced capacity to repair damaged myocardium 

  12. Cell Bergmann 161 1566 2015 10.1016/j.cell.2015.05.026 Dynamics of cell generation and turnover in the human heart 

  13. Colloids Surf. B Biointerfaces Bian 140 392 2016 10.1016/j.colsurfb.2016.01.008 The self-crosslinking smart hyaluronic acid hydrogels as injectable three-dimensional scaffolds for cells culture 

  14. Biomaterials Blackburn 39 182 2015 10.1016/j.biomaterials.2014.11.004 Timing underpins the benefits associated with injectable collagen biomaterial therapy for the treatment of myocardial infarction 

  15. Biomaterials Boopathy 35 8103 2014 10.1016/j.biomaterials.2014.05.082 The modulation of cardiac progenitor cell function by hydrogel- dependent Notch1 activation 

  16. Tissue Eng. Part A Boopathy 21 2315 2015 10.1089/ten.tea.2014.0622 Intramyocardial delivery of Notch ligand-containing hydrogels improves cardiac function and angiogenesis following infarction 

  17. Acta Biomater. Brown 9 4948 2013 10.1016/j.actbio.2012.10.025 Expanded applications, shifting paradigms and an improved understanding of host-biomaterial interactions 

  18. Biomaterials Chang 33 8026 2012 10.1016/j.biomaterials.2012.07.058 Hyaluronic acid-human blood hydrogels for stem cell transplantation 

  19. J. Control. Release Chang 170 287 2013 10.1016/j.jconrel.2013.04.022 Functionalized nanoparticles provide early cardioprotection after acute myocardial infarction 

  20. Stem Cells Transl. Med. Chang 5 56 2016 10.5966/sctm.2015-0092 Injection of human cord blood cells with hyaluronan improves postinfarction cardiac repair in pigs 

  21. Am. J. Physiol. Heart Circ. Physiol. Chen 306 1078 2014 10.1152/ajpheart.00801.2013 Injection of autologous bone marrow cells in hyaluronan hydrogel improves cardiac performance after infarction in pigs 

  22. Kaohsiung J. Med. Sci. Chen 30 173 2014 10.1016/j.kjms.2013.12.004 Injection of composite with bone marrow-derived mesenchymal stem cells and a novel synthetic hydrogel after myocardial infarction: a protective role in left ventricle function 

  23. Biomaterials Cheng 33 5317 2012 10.1016/j.biomaterials.2012.04.006 Functional performance of human cardiosphere-derived cells delivered in an In situ polymerizable hyaluronan-Gelatin hydrogel 

  24. Ann. N. Y. Acad. Sci. Chiu 1269 16 2012 10.1111/j.1749-6632.2012.06718.x Controlled delivery of thymosin β4 for tissue engineering and cardiac regenerative medicine 

  25. Eur. J. Heart Fail. Cittadini 13 1264 2011 10.1093/eurjhf/hfr143 Complementary therapeutic effects of dual delivery of insulin-like growth factor-1 and vascular endothelial growth factor by gelatin microspheres in experimental heart failure 

  26. Curr. Med. Chem. Clares 19 3203 2012 10.2174/092986712800784676 Drug delivery to inflammation based on nanoparticles surface decorated with biomolecules 

  27. Antioxid. Redox Signal. Cochain 18 1100 2013 10.1089/ars.2012.4849 Angiogenesis in the infarcted myocardium 

  28. Circ. Heart Fail. Cohen 7 619 2014 10.1161/CIRCHEARTFAILURE.113.001273 A bioengineered hydrogel system enables targeted and sustained intramyocardial delivery of neuregulin: activating the cardiomyocyte cell cycle and enhancing ventricular function in a murine model of ischemic cardiomyopathy 

  29. Int. J. Pharm. Crommelin 454 496 2013 10.1016/j.ijpharm.2013.02.020 Towards more effective advanced drug delivery systems 

  30. Engineering Cui 2 141 2016 10.1016/J.ENG.2016.01.028 Application of biomaterials in cardiac repair and regeneration 

  31. Growth Factors Daskalopoulos 33 1 2015 10.3109/08977194.2015.1072527 Attenuation of post-infarction remodeling in rats by sustained myocardial growth hormone administration 

  32. Int. J. Cardiol. Della Rocca 220 149 2016 10.1016/j.ijcard.2016.06.158 An injectable capillary-like microstructured alginate hydrogel improves left ventricular function after myocardial infarction in rats 

  33. J. Biomed. Mater. Res. Part A Deng 103 907 2015 10.1002/jbm.a.35232 Delivery of alginate-chitosan hydrogel promotes endogenous repair and preserves cardiac function in rats with myocardial infarction 

  34. Circulation Dhingra 128 69 2013 10.1161/CIRCULATIONAHA.112.000324 Preserving prostaglandin E2 level prevents rejection of implanted allogeneic mesenchymal stem cells and restores postinfarction ventricular function 

  35. Biomaterials Dorsey 69 65 2015 10.1016/j.biomaterials.2015.08.011 MRI evaluation of injectable hyaluronic acid-based hydrogel therapy to limit ventricular remodeling after myocardial infarction 

  36. Smart Hydrogels Ebara 9 2014 

  37. Sci. Transl. Med. Eckhouse 6 223 2014 10.1126/scitranslmed.3007244 Local hydrogel release of recombinant TIMP-3 attenuates adverse left ventricular remodeling after experimental myocardial infarction 

  38. Nat. Mater. Ehrbar 7 800 2008 10.1038/nmat2250 Drug-sensing hydrogels for the inducible release of biopharmaceuticals 

  39. Adv. Drug Deliv. Rev. Emmert 69 254 2014 10.1016/j.addr.2013.12.004 Cell therapy, 3D culture systems and tissue engineering for cardiac regeneration 

  40. Int. J. Cardiol. Engelmann 144 399 2010 10.1016/j.ijcard.2009.04.047 G-CSF in patients suffering from late revascularised ST elevation myocardial infarction: final 1-year-results of the G-CSF-STEMI Trial 

  41. Int. J. Nanomed. Fang 10 4691 2015 10.2147/IJN.S81451 Sustained co-delivery of BIO and IGF-1 by a novel hybrid hydrogel system to stimulate endogenous cardiac repair in myocardial infarcted rat hearts 

  42. J. Tissue Eng. Regener. Med. Fathi 7 697 2013 10.1002/term.1460 Induction of angiogenesis via topical delivery of basic-fibroblast growth factor from polyvinyl alcohol-dextran blend hydrogel in an ovine model of acute myocardial infarction 

  43. Adv. Drug Deliv. Rev Feyen 106 104 2016 10.1016/j.addr.2016.04.023 Stem cell-based therapy: improving myocardial cell delivery 

  44. J. Control. Release Formiga 147 30 2010 10.1016/j.jconrel.2010.07.097 Sustained release of VEGF through PLGA microparticles improves vasculogenesis and tissue remodeling in an acute myocardial ischemia-reperfusion model 

  45. Heart Fail. Rev. Formiga 17 449 2012 10.1007/s10741-011-9285-8 Angiogenic therapy for cardiac repair based on protein delivery systems 

  46. Eur. J. Pharm. Biopharm. Formiga 85 665 2013 10.1016/j.ejpb.2013.02.017 Biodegradation and heart retention of polymeric microparticles in a rat model of myocardial ischemia 

  47. J. Control. Release Formiga 173 132 2014 10.1016/j.jconrel.2013.10.034 Controlled delivery of fibroblast growth factor-1 and neuregulin-1 from biodegradable microparticles promotes cardiac repair in a rat myocardial infarction model through activation of endogenous regeneration 

  48. Nat. Rev. Cardiol. Frangogiannis 11 255 2014 10.1038/nrcardio.2014.28 The inflammatory response in myocardial injury, repair, and remodelling 

  49. Adv. Drug Deliv. Rev. French 96 40 2016 10.1016/j.addr.2015.04.023 Self-assembling peptide-based delivery of therapeutics for myocardial infarction 

  50. Circ. Cardiovasc. Interv. Frey 7 806 2014 10.1161/CIRCINTERVENTIONS.114.001478 Intracoronary delivery of injectable bioabsorbable scaffold (IK-5001) to treat left ventricular remodeling after ST-elevation myocardial infarction: a first-in-man study 

  51. Biomaterials Fujimoto 30 4357 2009 10.1016/j.biomaterials.2009.04.055 Synthesis, characterization and therapeutic efficacy of a biodegradable, thermoresponsive hydrogel designed for application in chronic infarcted myocardium 

  52. J. Thorac. Cardiovasc. Surg. Gaffey 150 1268 2015 10.1016/j.jtcvs.2015.07.035 Injectable shear-thinning hydrogels used to deliver endothelial progenitor cells, enhance cell engraftment, and improve ischemic myocardium 

  53. Trends Biotechnol. Galaev 17 335 1999 10.1016/S0167-7799(99)01345-1 Smart polymers and what they could do in biotechnology and medicine 

  54. Circulation Galaup 125 140 2012 10.1161/CIRCULATIONAHA.111.049072 Protection against myocardial infarction and no-reflow through preservation of vascular integrity by angiopoietin-like 4 

  55. Sci. Rep. Garbayo 6 25932 2016 10.1038/srep25932 Catheter-based intramyocardial injection of FGF1 or NRG1-loaded MPs improves cardiac function in a preclinical model of ischemia-reperfusion 

  56. Biomaterials Garbern 32 2407 2011 10.1016/j.biomaterials.2010.11.075 Delivery of basic fibroblast growth factor with a pH-responsive, injectable hydrogel to improve angiogenesis in infarcted myocardium 

  57. J. R. Soc. Inter. Gasperini 11 20140817 2014 10.1098/rsif.2014.0817 Natural polymers for the microencapsulation of cells 

  58. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. Gauvin 4 235 2012 10.1002/wnan.171 Hydrogels and microtechnologies for engineering the cellular microenvironment 

  59. Circ. Res. Gnecchi 103 1204 2008 10.1161/CIRCRESAHA.108.176826 Paracrine mechanisms in adult stem cell signaling and therapy 

  60. Materials Gonçalves 3 1420 2010 10.3390/ma3021420 Self-assembled hydrogel nanoparticles for drug delivery applications 

  61. J. Cardiol. Grimaldi 62 267 2013 10.1016/j.jjcc.2013.05.017 Potential benefits of cell therapy in coronary heart disease 

  62. Biochem. Biophys. Res. Commun. Guo 424 105 2012 10.1016/j.bbrc.2012.06.080 Sustained delivery of VEGF from designer self-assembling peptides improves cardiac function after myocardial infarction 

  63. Mol. Pharm. Gustafson 7 1050 2010 10.1021/mp100161u Silk-elastin-like hydrogel improves the safety of adenovirus-mediated gene-directed enzyme-prodrug therapy 

  64. Biomaterials Habib 32 7514 2011 10.1016/j.biomaterials.2011.06.049 A combined cell therapy and in-situ tissue-engineering approach for myocardial repair 

  65. Adv. Drug Deliv. Rev. Hastings 84 85 2015 10.1016/j.addr.2014.08.006 Drug and cell delivery for cardiac regeneration 

  66. J. Cardiovasc. Pharmacol. He 61 283 2013 10.1097/FJC.0b013e31827ecd50 Intramyocardial delivery of HMGB1 by a novel thermosensitive hydrogel attenuates cardiac remodeling and improves cardiac function after myocardial infarction 

  67. J. Surg. Res. Henning 201 490 2015 10.1016/j.jss.2015.11.012 Chitosan hydrogels significantly limit left ventricular infarction and remodeling and preserve myocardial contractility 

  68. Lancet (London, England) Heusch 378 1827 2011 10.1016/S0140-6736(11)61648-6 SCIPIO brings new momentum to cardiac cell therapy 

  69. Eur. Heart J. Hirsch 32 1736 2011 10.1093/eurheartj/ehq449 Intracoronary infusion of mononuclear cells from bone marrow or peripheral blood compared with standard therapy in patients after acute myocardial infarction treated by primary percutaneous coronary intervention: results of the randomized controlled HEBE 

  70. ISRN Mater. Sci. Ige 2012 1 2012 10.5402/2012/983062 Natural products: a minefield of biomaterials 

  71. Crit. Rev. Ther. Drug Carrier Syst. Jain 30 293 2013 10.1615/CritRevTherDrugCarrierSyst.2013006955 Peptide and protein delivery using new drug delivery systems 

  72. Br. Med. Bull. Jawad 87 31 2008 10.1093/bmb/ldn026 Myocardial tissue engineering 

  73. Circ. Res. Jay 113 933 2013 10.1161/CIRCRESAHA.113.300215 Protein engineering for cardiovascular therapeutics: untapped potential for cardiac repair 

  74. Biomaterials Jiang 35 4969 2014 10.1016/j.biomaterials.2014.03.001 Click hydrogels, microgels and nanogels: emerging platforms for drug delivery and tissue engineering 

  75. Expert Opin. Drug Deliv. Johnson 10 59 2013 10.1517/17425247.2013.739156 Injectable hydrogel therapies and their delivery strategies for treating myocardial infarction 

  76. Biomater. Sci. Johnson 29 13 2014 Human versus porcine tissue sourcing for an injectable myocardial matrix hydrogel 

  77. Biomaterials Kadner 33 2060 2012 10.1016/j.biomaterials.2011.11.031 The beneficial effects of deferred delivery on the efficiency of hydrogel therapy post myocardial infarction 

  78. J. Am. Chem. Soc. Kataoka 120 12694 1998 10.1021/ja982975d Totally synthetic polymer gels responding to external glucose concentration: their preparation and application to on-off regulation of insulin release 

  79. Arch. Pharm. Res. Kim 37 60 2014 10.1007/s12272-013-0280-6 Natural and synthetic biomaterials for controlled drug delivery 

  80. Regener. Med. Kloner 10 683 2015 10.2217/rme.15.47 Rebuilding the infarcted heart with noncellular material 

  81. Eur. J. Pharm. Biopharm. Klouda 97 338 2015 10.1016/j.ejpb.2015.05.017 Thermoresponsive hydrogels in biomedical applications: a seven-year update 

  82. Angew. Chem. Int. Ed. Eng. Kopeček 51 7396 2012 10.1002/anie.201201040 Smart self-assembled hybrid hydrogel biomaterials 

  83. Eur. J. Pharm. Sci. Kopeček 20 1 2003 10.1016/S0928-0987(03)00164-7 Smart and genetically engineered biomaterials and drug delivery systems 

  84. J. Cardiovasc. Transl. Res. Koudstaal 7 232 2014 10.1007/s12265-013-9518-4 Sustained delivery of insulin-like growth factor-1/hepatocyte growth factor stimulates endogenous cardiac repair in the chronic infarcted pig heart 

  85. Am. Heart J. Kovacic 156 954 2008 10.1016/j.ahj.2008.04.034 Safety and efficacy of consecutive cycles of granulocyte-colony stimulating factor: and an intracoronary CD133+ cell infusion in patients with chronic refractory ischemic heart disease: the G-CSF in angina patients with IHD to stimulate neovascularization 

  86. Clin. Cardiol. Kurrelmeyer 21 I14 1998 10.1002/clc.4960211304 Cardiac remodeling as a consequence and cause of progressive heart failure 

  87. Macromol. Biosci. Lakshmanan 13 1119 2013 10.1002/mabi.201300223 Polymeric scaffold aided stem cell therapeutics for cardiac muscle repair and regeneration 

  88. Circulation Landa 117 1388 2008 10.1161/CIRCULATIONAHA.107.727420 Effect of injectable alginate implant on cardiac remodeling and function after recent and old infarcts in rat 

  89. Biomacromolecules Lau 16 28 2015 10.1021/bm501361c Opportunities for multicomponent hybrid hydrogels in biomedical applications 

  90. Proc. Natl. Acad. Sci. U. S. A. Lavine 111 16029 2014 10.1073/pnas.1406508111 Distinct macrophage lineages contribute to disparate patterns of cardiac recovery and remodeling in the neonatal and adult heart 

  91. Chem. Eng. Sci. Lee 45 766 1990 10.1016/0009-2509(90)87019-O Pressure-dependent phase transitions in hydrogels 

  92. J. Drug Target. Lee 21 822 2013 10.3109/1061186X.2013.829072 Injectable microsphere/hydrogel hybrid system containing heat shock protein as therapy in a murine myocardial infarction model 

  93. Int. J. Cardiol. Lee 168 2022 2013 10.1016/j.ijcard.2013.01.003 Algisyl-LVR™ with coronary artery bypass grafting reduces left ventricular wall stress and improves function in the failing human heart 

  94. Int. J. Cardiol. Lee 199 18 2015 10.1016/j.ijcard.2015.06.111 The feasibility and safety of Algisyl-LVR™ as a method of left ventricular augmentation in patients with dilated cardiomyopathy: initial first in man clinical results 

  95. J. Am. Coll. Cardiol. Leor 54 1014 2009 10.1016/j.jacc.2009.06.010 Intracoronary injection of In situ forming alginate hydrogel reverses left ventricular remodeling after myocardial infarction in swine 

  96. Semin. Cell Dev. Biol. Leor 58 26 2016 10.1016/j.semcdb.2016.04.012 Macrophages and regeneration: lessons from the heart 

  97. J. Am. Heart Assoc. Levit 2 2013 10.1161/JAHA.113.000367 Cellular encapsulation enhances cardiac repair 

  98. Nanoscale Li 5 1399 2013 10.1039/c2nr33503d Microgel particles at the fluid-fluid interfaces 

  99. Biomaterials Li 35 5679 2014 10.1016/j.biomaterials.2014.03.067 A PNIPAAm-based thermosensitive hydrogel containing SWCNTs for stem cell transplantation in myocardial repair 

  100. Biomater. Sci. Lim 2 603 2014 10.1039/C3BM60288E Smart hydrogels as functional biomimetic systems 

  101. Pharm. Res. Lin 26 631 2009 10.1007/s11095-008-9801-2 PEG hydrogels for the controlled release of biomolecules in regenerative medicine 

  102. Sci. Transl. Med. Lin 4 146ra109 2012 10.1126/scitranslmed.3003841 Instructive nanofiber scaffolds with VEGF create a microenvironment for arteriogenesis and cardiac repair 

  103. J. Magn. Magn. Mater. Liu 304 397 2006 10.1016/j.jmmm.2006.01.203 Preparation and characterization of smart magnetic hydrogels and its use for drug release 

  104. Biomaterials Liu 33 3093 2012 10.1016/j.biomaterials.2011.12.044 The influence of chitosan hydrogel on stem cell engraftment, survival and homing in the ischemic myocardial microenvironment 

  105. Circulation MacArthur 128 S79 2013 10.1161/CIRCULATIONAHA.112.000343 Sustained release of engineered stromal cell-derived factor 1-α from injectable hydrogels effectively recruits endothelial progenitor cells and preserves ventricular function after myocardial infarction 

  106. Eur. J. Heart Fail. Mann 18 314 2015 10.1002/ejhf.449 One-year follow-up results from AUGMENT-HF: a multicentre randomized controlled clinical trial of the efficacy of left ventricular augmentation with Algisyl in the treatment of heart failure 

  107. Springerplus Matar 3 440 2014 10.1186/2193-1801-3-440 Stem cell therapy for cardiac dysfunction 

  108. PLoS One Mathieu 7 e51991 2012 10.1371/journal.pone.0051991 Intramyocardial delivery of mesenchymal stem cell-seeded hydrogel preserves cardiac function and attenuates ventricular remodeling after myocardial infarction 

  109. J. Tissue Eng. Matsushita 7 1 2016 10.1177/2041731416646676 Administration of cells with thermosensitive hydrogel enhances the functional recovery in ischemic rat heart 

  110. Biomaterials Mayfield 35 133 2014 10.1016/j.biomaterials.2013.09.085 The effect of encapsulation of cardiac stem cells within matrix-enriched hydrogel capsules on cell survival, post-ischemic cell retention and cardiac function 

  111. Cardiol. Ther. McCune 2016 10.1007/s40119-016-0063-5 A review of the key clinical trials of 2015: results and implications 

  112. Ann. Thorac. Surg. McGarvey 99 597 2015 10.1016/j.athoracsur.2014.09.014 Injectable microsphere gel progressively improves global ventricular function, regional contractile strain, and mitral regurgitation after myocardial infarction 

  113. Circulation Menasché 117 1189 2008 10.1161/CIRCULATIONAHA.107.734103 The Myoblast Autologous Grafting in Ischemic Cardiomyopathy (MAGIC) trial: first randomized placebo-controlled study of myoblast transplantation 

  114. 2011 Global Atlas on Cardiovascular Disease Prevention and Control 

  115. Ther. Deliv. Meng 3 1457 2012 10.4155/tde.12.132 Micro- and nano-fabricated implantable drug-delivery systems 

  116. Circulation Mihic 132 772 2015 10.1161/CIRCULATIONAHA.114.014937 A conductive polymer hydrogel supports cell electrical signaling and improves cardiac function after implantation into myocardial infarct 

  117. Chem. Soc. Rev. Molina 44 6161 2015 10.1039/C5CS00199D Stimuli-responsive nanogel composites and their application in nanomedicine 

  118. Trends Pharmacol. Sci. Monaghan 33 635 2012 10.1016/j.tips.2012.09.003 Interference: an alteRNAtive therapy following acute myocardial infarction 

  119. J. Biomater. Appl. Naderi 26 383 2011 10.1177/0885328211408946 Review paper: critical issues in tissue engineering: biomaterials, cell sources, angiogenesis, and drug delivery systems 

  120. Adv. Biochem. Eng. Biotechnol. Nair 102 47 2006 Polymers as biomaterials for tissue engineering and controlled drug delivery 

  121. Nair 2016 Injectable Hydrogels for Regenerative Engineering 

  122. PLoS One Nakajima 10 1 2015 10.1371/journal.pone.0133308 Gelatin Hydrogel enhances the engraftment of transplanted Cardiomyocytes and angiogenesis to ameliorate cardiac function after myocardial infarction 

  123. Acta Biomater. Nelson 7 1 2011 10.1016/j.actbio.2010.06.039 Intra-myocardial biomaterial injection therapy in the treatment of heart failure Materials, outcomes and challenges 

  124. Biomacromolecules Nelson 15 1 2014 10.1021/bm4010639 Intramyocardial injection of a synthetic hydrogel with delivery of bFGF and IGF1 in a rat model of ischemic cardiomyopathy 

  125. Curr. Opin. Biotechnol. Nguyen 34 225 2015 10.1016/j.copbio.2015.03.016 Developing injectable nanomaterials to repair the heart 

  126. Curr. Opin. Biotechnol. Nih 40 155 2016 10.1016/j.copbio.2016.04.021 Hydrogels for brain repair after stroke: an emerging treatment option 

  127. Prog. Polym. Sci. Oh 33 448 2008 10.1016/j.progpolymsci.2008.01.002 The development of microgels/nanogels for drug delivery applications 

  128. Semin. Cell Dev. Biol. Ongstad S1084 2016 Can heart function lost to disease Be regenerated by therapeutic targeting of cardiac scar tissue? 

  129. Circ. Cardiovasc. Interv. Ott 3 408 2010 10.1161/CIRCINTERVENTIONS.109.904425 Erythropoietin in patients with acute ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention: a randomized, double-blind trial 

  130. J. Interv. Card. Electrophysiol. Panda 41 117 2014 10.1007/s10840-014-9940-9 Improved conduction and increased cell retention in healed MI using mesenchymal stem cells suspended in alginate hydrogel 

  131. J. Control. Release Pascual-Gil 203 23 2015 10.1016/j.jconrel.2015.02.009 Heart regeneration after miocardial infarction using synthetic biomaterials 

  132. J. Control. Release Pascual-Gil 220 388 2015 10.1016/j.jconrel.2015.10.058 Tracking the in vivo release of bioactive NRG from PLGA and PEG-PLGA microparticles in infarcted hearts 

  133. Biomaterials Peña 46 26 2015 10.1016/j.biomaterials.2014.12.050 Localized delivery of mechano-growth factor E-domain peptide via polymeric microstructures improves cardiac function following myocardial infarction 

  134. Chem. Soc. Rev. Place 38 1139 2009 10.1039/b811392k Synthetic polymer scaffolds for tissue engineering 

  135. Biomaterials Plotkin 35 1429 2014 10.1016/j.biomaterials.2013.10.058 The effect of matrix stiffness of injectable hydrogels on the preservation of cardiac function after a heart attack 

  136. J. Cell. Mol. Med. Projahn 18 790 2014 10.1111/jcmm.12225 Controlled intramyocardial release of engineered chemokines by biodegradable hydrogels as a treatment approach of myocardial infarction 

  137. Nat. Mater. Purcell 13 653 2014 10.1038/nmat3922 Injectable and bioresponsive hydrogels for on-demand matrix metalloproteinase inhibition 

  138. Tissue Eng. Part A Qian 18 1652 2012 10.1089/ten.tea.2011.0591 Hemodynamic contribution of stem cell scaffolding in acute injured myocardium 

  139. J. Am. Coll. Cardiol. Rane 58 2615 2011 10.1016/j.jacc.2011.11.001 Biomaterials for the treatment of myocardial infarction: a 5-year update 

  140. PLoS One Rane 6 e21571 2011 10.1371/journal.pone.0021571 Increased infarct wall thickness by a bio-inert material is insufficient to prevent negative left ventricular remodeling after myocardial infarction 

  141. J. Am. Coll. Cardiol. Rao 68 715 2016 10.1016/j.jacc.2016.05.053 Bioabsorbable intracoronary matrix for prevention of ventricular remodeling after myocardial infarction 

  142. Int. J. Nanomed. Ravichandran 7 5969 2012 10.2147/IJN.S37575 Minimally invasive cell-seeded biomaterial systems for injectable/epicardial implantation in ischemic heart disease 

  143. J. Tissue Eng. Regener. Med. Reis 10 11 2014 10.1002/term.1944 Biomaterials in myocardial tissue engineering 

  144. Circ. Hear. Fail. Reis 8 333 2015 10.1161/CIRCHEARTFAILURE.114.001881 Hydrogels with integrin-binding angiopoietin-1-derived peptide, QHREDGS, for treatment of acute myocardial infarction 

  145. J. Int. Med. Res. Ren 40 2167 2012 10.1177/030006051204000615 Physical properties of poly(N-isopropylacrylamide) hydrogel promote its effects on cardiac protection after myocardial infarction 

  146. Biomed Res. Int. Rodríguez-Vázquez 2015 2015 10.1155/2015/821279 Chitosan and its potential use as a scaffold for tissue engineering in regenerative medicine 

  147. Semin. Cell Dev. Biol. Rubin 58 34 2016 10.1016/j.semcdb.2016.04.011 Recent advancements in understanding endogenous heart regeneration-insights from adult zebrafish and neonatal mice 

  148. Adv. Drug Deliv. Rev. Rufaihah 96 31 2016 10.1016/j.addr.2015.07.003 Hydrogels for therapeutic cardiovascular angiogenesis 

  149. Biomaterials Rufaihah 34 8195 2013 10.1016/j.biomaterials.2013.07.031 Enhanced infarct stabilization and neovascularization mediated by VEGF-loaded PEGylated fibrinogen hydrogel in a rodent myocardial infarction model 

  150. Adv. Drug Deliv. Rev. Ruvinov 96 54 2016 10.1016/j.addr.2015.04.021 Alginate biomaterial for the treatment of myocardial infarction Progress, translational strategies, and clinical outlook: from ocean algae to patient bedside 

  151. PLoS One Salimath 7 e50980 2012 10.1371/journal.pone.0050980 Dual delivery of hepatocyte and vascular endothelial growth factors via a protease-degradable hydrogel improves cardiac function in rats 

  152. Adv. Colloid Interface Sci. Samchenko 168 247 2011 10.1016/j.cis.2011.06.005 Multipurpose smart hydrogel systems 

  153. Circ. Res. Sanganalmath 113 810 2013 10.1161/CIRCRESAHA.113.300219 Cell therapy for heart failure: a comprehensive overview of experimental and clinical studies current challenges, and future directions 

  154. Chem. Rec. Sasaki 10 366 2010 Nanogel engineering for new nanobiomaterials: from chaperoning engineering to biomedical applications 

  155. Regener. Med. Schulman 7 17 2012 10.2217/rme.12.80 Key developments in stem cell therapy in cardiology 

  156. Acta Biomater. Seif-Naraghi 8 3695 2013 10.1016/j.actbio.2012.06.030 Injectable extracellular matrix derived hydrogel provides a platform for enhanced retention and delivery of a heparin- binding growth factor 

  157. Sci. Transl. Med. Seif-Naraghi 5 173ra25 2013 10.1126/scitranslmed.3005503 Safety and efficacy of an injectable extracellular matrix hydrogel for treating myocardial infarction 

  158. Science Seliktar 336 1124 2012 10.1126/science.1214804 Designing cell-compatible hydrogels for biomedical applications 

  159. Biotechnol. Adv. Sepantafar 34 362 2016 10.1016/j.biotechadv.2016.03.003 Stem cells and injectable hydrogels: synergistic therapeutics in myocardial repair 

  160. Biomaterials Shen 32 9290 2011 10.1016/j.biomaterials.2011.08.057 The amelioration of cardiac dysfunction after myocardial infarction by the injection of keratin biomaterials derived from human hair 

  161. Biomed. Res. Int. Sheng 2013 547902 2013 10.1155/2013/547902 Current stem cell delivery methods for myocardial repair 

  162. ACS Appl. Mater. Interfaces Shu 7 6505 2015 10.1021/acsami.5b01234 RoY peptide-modified chitosan-based hydrogel to improve angiogenesis and cardiac repair under hypoxia 

  163. Carbohydr. Polym. Silva 116 267 2015 10.1016/j.carbpol.2014.06.010 Polysaccharide-based strategies for heart tissue engineering 

  164. Tissue Eng. Part A Simón-Yarza 21 1654 2015 10.1089/ten.tea.2014.0523 Polymeric electrospun scaffolds: neuregulin encapsulation and biocompatibility studies in a model of myocardial ischemia 

  165. J. Cardiovasc. Transl. Res. Singelyn 3 478 2010 10.1007/s12265-010-9202-x Injectable materials for the treatment of myocardial infarction and heart failure: the promise of decellularized matrices 

  166. Biomaterials Singelyn 30 5409 2009 10.1016/j.biomaterials.2009.06.045 Naturally derived myocardial matrix as an injectable scaffold for cardiac tissue engineering 

  167. J. Am. Coll. Cardiol. Singelyn 59 751 2012 10.1016/j.jacc.2011.10.888 Catheter-deliverable hydrogel derived from decellularized ventricular extracellular matrix increases endogenous cardiomyocytes and preserves cardiac function post-myocardial infarction 

  168. Curr. Opin. Pharmacol. Singla 27 19 2016 10.1016/j.coph.2016.01.003 Stem cells and exosomes in cardiac repair 

  169. Rev. Nanomed. Nanobiotechnol. Sivaram 7 509 2015 10.1002/wnan.1328 Nanogels for delivery, imaging and therapy: wiley Interdiscip 

  170. J. Cell. Mol. Med. Smits 9 25 2005 10.1111/j.1582-4934.2005.tb00334.x The role of stem cells in cardiac regeneration 

  171. Biomaterials Song 35 2436 2014 10.1016/j.biomaterials.2013.12.011 Regeneration of chronic myocardial infarction by injectable hydrogels containing stem cell homing factor SDF-1 and angiogenic peptide Ac-SDKP 

  172. Acta Biomater. Song S1742 2016 An injectable silk sericin hydrogel promotes cardiac functional recovery after ischemic myocardial infarction 

  173. Pharm. Dev. Technol. Soni 19 651 2014 10.3109/10837450.2013.819014 High encapsulation efficiency of poloxamer-based injectable thermoresponsive hydrogels of etoposide 

  174. Saudi Pharm. J. Soni 24 133 2016 10.1016/j.jsps.2014.04.001 Nanogels as potential nanomedicine carrier for treatment of cancer: a mini review of the state of the art 

  175. Biomaterials Sonnenberg 45 56 2015 10.1016/j.biomaterials.2014.12.021 Delivery of an engineered HGF fragment in an extracellular matrix-derived hydrogel prevents negative LV remodeling post-myocardial infarction 

  176. Drug Dev. Ind. Pharm. Soppimath 28 957 2002 10.1081/DDC-120006428 Stimulus-responsive "smart" hydrogels as novel drug delivery systems 

  177. J. Cell. Mol. Med. Spadaccio 13 422 2009 10.1111/j.1582-4934.2008.00532.x Drug releasing systems in cardiovascular tissue engineering 

  178. Int. J. Cardiol. Sun 173 410 2014 10.1016/j.ijcard.2014.03.015 Direct implantation versus platelet-rich fibrin-embedded adipose-derived mesenchymal stem cells in treating rat acute myocardial infarction 

  179. Cardiovasc. Res. Tang 91 402 2011 10.1093/cvr/cvr053 VEGF/SDF-1 promotes cardiac stem cell mobilization and myocardial repair in the infarcted heart 

  180. Adv. Mater. Tayalia 21 3269 2009 10.1002/adma.200900241 Controlled growth factor delivery for tissue engineering 

  181. Mater. Sci. Eng. C Toh 45 690 2014 10.1016/j.msec.2014.04.026 Advances in hydrogel delivery systems for tissue regeneration 

  182. J. Cardiovasc. Transl. Res. Tous 4 528 2011 10.1007/s12265-011-9291-1 Injectable acellular hydrogels for cardiac repair 

  183. Acta Biomater. Tous 8 3218 2012 10.1016/j.actbio.2012.05.027 Tunable hydrogel-microsphere composites that modulate local inflammation and collagen bulking 

  184. Circ. J. Toyoda 77 1097 2013 10.1253/circj.CJ-13-0296 Present status and future perspectives of heart transplantation 

  185. JAMA Traverse 306 2110 2011 10.1001/jama.2011.1670 Effect of intracoronary delivery of autologous bone marrow mononuclear cells 2 to 3 weeks following acute myocardial infarction on left ventricular function: the LateTIME randomized trial 

  186. Mater. Sci. Eng. C Ullah 57 414 2015 10.1016/j.msec.2015.07.053 Classification, processing and application of hydrogels: a review 

  187. Stem Cells Transl. Med. Ungerleider 3 1090 2014 10.5966/sctm.2014-0049 Concise review: injectable biomaterials for the treatment of myocardial infarction and peripheral artery disease: translational challenges and progress 

  188. Dev. Cell Uygur 36 362 2016 10.1016/j.devcel.2016.01.018 Mechanisms of cardiac regeneration 

  189. J. R. Soc. Interface Venugopal 9 1 2012 10.1098/rsif.2011.0301 Biomaterial strategies for alleviation of myocardial infarction 

  190. Int. J. Cardiol. Vilaeti 165 278 2013 10.1016/j.ijcard.2011.08.036 Short-term ventricular restraint attenuates post-infarction remodeling in rats 

  191. Bioconjug. Chem. Vinogradov 15 50 2004 10.1021/bc034164r Nanogels for oligonucleotide delivery to the brain 

  192. Cardiol. Res. Pract. Vu 2012 240497 2012 Myocardial restoration: is it the cell or the architecture or both? 

  193. Adv. Drug Deliv. Rev. Wang 96 77 2016 10.1016/j.addr.2015.06.002 Decellularized myocardial matrix hydrogels: in basic research and preclinical studies 

  194. J. Cell. Mol. Med. Wang 16 1310 2012 10.1111/j.1582-4934.2011.01409.x Injectable biodegradable hydrogels for embryonic stem cell transplantation: improved cardiac remodelling and function of myocardial infarction 

  195. Biomaterials Wang 35 3986 2014 10.1016/j.biomaterials.2014.01.021 Promotion of cardiac differentiation of brown adipose derived stem cells by chitosan hydrogel for repair after myocardial infarction 

  196. Int. J. Cardiol. Wang 190 177 2015 10.1016/j.ijcard.2015.04.139 A temperature-sensitive, self-adhesive hydrogel to deliver iPSC-derived cardiomyocytes for heart repair 

  197. J. Am. Coll. Cardiol. Wassenaar 67 1074 2016 10.1016/j.jacc.2015.12.035 Evidence for mechanisms underlying the functional benefits of a myocardial matrix hydrogel for post-MI treatment 

  198. Nat. Commun. Xia 4 2226 2013 10.1038/ncomms3226 Nano-structured smart hydrogels with rapid response and high elasticity 

  199. Exp. Biol. Med. (Maywood) Xia 240 593 2015 10.1177/1535370214560957 Enhanced infarct myocardium repair mediated by thermosensitive copolymer hydrogel-based stem cell transplantation 

  200. Acta Biomater. Xu 15 55 2014 10.1016/j.actbio.2014.12.016 Injectable biodegradable hybrid hydrogels based on thiolated collagen and oligo(acryloyl carbonate)-poly(ethylene glycol)-oligo(acryloyl carbonate) copolymer for functional cardiac regeneration 

  201. Int. J. Pharm. Yang 235 1 2002 10.1016/S0378-5173(02)00004-2 Colon-specific drug delivery: new approaches and in vitro/in vivo evaluation 

  202. Biomaterials Yao 60 130 2015 10.1016/j.biomaterials.2015.04.046 Nitric oxide releasing hydrogel enhances the therapeutic efficacy of mesenchymal stem cells for myocardial infarction 

  203. Cell Stem Cell Ye 15 750 2014 10.1016/j.stem.2014.11.009 Cardiac repair in a porcine model of acute myocardial infarction with human induced pluripotent stem cell-derived cardiovascular cells 

  204. J. Biosci. Bioeng. Yoon 118 461 2014 10.1016/j.jbiosc.2014.04.001 Differential regeneration of myocardial infarction depending on the progression of disease and the composition of biomimetic hydrogel 

  205. Biomaterials Yoshizumi 83 182 2016 10.1016/j.biomaterials.2015.12.002 Timing effect of intramyocardial hydrogel injection for positively impacting left ventricular remodeling after myocardial infarction 

  206. Cardiovasc. Res. Zacchigna 102 312 2014 10.1093/cvr/cvu057 Extra- and intracellular factors regulating cardiomyocyte proliferation in postnatal life 

  207. Stem Cells Int. Zhang 2016 4328362 2016 10.1155/2016/4328362 Inhibition of myocardial ischemia/reperfusion injury by exosomes secreted from mesenchymal stem cells 

  208. Mater. Sci. Eng. C Zhang 60 560 2016 10.1016/j.msec.2015.11.041 New progress and prospects: the application of nanogel in drug delivery 

  209. Macromol. Chem. Phys. Zhang 206 2005 10.1002/macp.200500275 Reflexive polymers and hydrogels 

  210. J. Biomed. Mater. Res. Part A Zhou 101A 567 2013 10.1002/jbm.a.34346 Effects of transmyocardial jet revascularization with chitosan hydrogel on channel patency and angiogenesis in canine infarcted hearts 

  211. Heart Vessels Zhu 1 2015 Intramyocardial delivery of VEGF165 via a novel biodegradable hydrogel induces angiogenesis and improves cardiac function after rat myocardial infarction 

  212. Expert Rev. Med. Devices Zhu 8 607 2011 10.1586/erd.11.27 Design properties of hydrogel tissue-engineering scaffolds 

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로