$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Modeling of gate underlap junctionless double gate MOSFET as bio-sensor

Materials science in semiconductor processing, v.71, 2017년, pp.240 - 251  

Ajay ,  Narang, R. ,  Saxena, M. ,  Gupta, M.

Abstract AI-Helper 아이콘AI-Helper

In this work, the sensitivity of two types gate underlap Junctionless Double Gate Metal-Oxide-Semiconductor Field-Effect Transistor (JL DG MOSFET) has been compared when the analytes bind in the underlap region. Gate underlap region considered at source end and drain end once at a time in the channe...

주제어

참고문헌 (36)

  1. IEEE Electron Device Lett. Barraud 33 1225 2012 10.1109/LED.2012.2203091 Scaling of trigate junctionless nanowire MOSFET with gate length down to 13 nm 

  2. IEEE Trans. Electron Dev. Park 49 2222 2002 10.1109/TED.2002.805634 Multiple-gate SOI MOSFETs: device design guidelines 

  3. IEEE Trans. Electron Dev. Kuo 61 3821 2014 10.1109/TED.2014.2354436 High-performance GAA sidewall-damascened sub-10-nm in situ n+-doped poly-Si NWs channels junctionless FETs 

  4. Nat. Nanotechnol. Colinge 5 225 2010 10.1038/nnano.2010.15 Nanowire transistors without junctions 

  5. Solid-State Electron. Jin 79 206 2013 10.1016/j.sse.2012.08.003 A unified analytical continuous current model applicable to accumulation mode (junctionless) and inversion mode MOSFETs with symmetric and asymmetric double-gate structures 

  6. Electron Devices, IEEE Trans. Hisamoto 47 2320 2000 10.1109/16.887014 FinFET-a self-aligned double-gate MOSFET scalable to 20 nm 

  7. Solid-State Electron. Lee 54 97 2010 10.1016/j.sse.2009.12.003 Performance estimation of junctionless multigate transistors 

  8. Appl. Phys. Lett. Lee 94 053511 2009 10.1063/1.3079411 Junctionless multigate field-effect transistor 

  9. Appl. Phys. Lett. Colinge 96 073510 2010 10.1063/1.3299014 Reduced electric field in junctionless transistors 

  10. IEEE Trans. Electron Dev. Choi 32 125 2011 10.1109/LED.2010.2093506 Sensitivity of threshold voltage to nanowire width variation in junctionless transistor 

  11. Electron Devices, IEEE Trans. on Lee 57 620 2010 10.1109/TED.2009.2039093 High-temperature performance of silicon junctionless MOSFETs 

  12. 10.1109/ESSDERC.2010.5618216 A. Kranti, R. Yan, C.-.W. Lee, I. Ferain, R. Yu, N.D. Akhavan, P. Razavi, J.P. Colinge, Junctionless nanowire transistor (JNT): properties and design guidelines, in: Proceedings Eur. Solid State Device Res. Conference, 2010, pp. 357-360. 

  13. IEEE Trans. Electron Dev. Sahu 35 411 2014 10.1109/LED.2013.2297451 Charge-plasma based process variation immune junctionless transistor 

  14. IEEE Trans. Electron Dev. Yeh 36 150 2015 10.1109/LED.2014.2378785 Characterizing the electrical properties of a novel junctionless poly-Si ultrathin-body field-effect transistor using a trench structure 

  15. Superlattices Microstruct. Ajay 85 557 2015 10.1016/j.spmi.2015.04.040 Investigation of dielectric modulated (DM) double gate (DG) junctionless MOSFETs for application as a biosensors 

  16. 10.1109/ICDCSyst.2014.6926183 Ajay, R. Narang, M. Saxena, M. Gupta, Analytical modeling of a split-gate dielectric modulated metal-oxide-semiconductor field-effect transistor for application as a biosensor, in: Proceedings of the 2014 2nd International Conference on Devices, Circuits and Systems (ICDCS), 2014, pp. 1-6. 

  17. 10.1109/INDCON.2013.6725863 Ajay, R. Narang, M. Saxena, M. Gupta, Investigation of dielectric-modulated double-gate junctionless MOSFET for detection of biomolecules, in: Proceedings of the 2013 Annual IEEE India Conference (INDICON-2013), pp. 1-6. 

  18. IEEE Sens. Puppo 1 2013 Femto-molar sensitive field effect transistor biosensors based on silicon nanowires and antibodies 

  19. Nano Lett. Kulkarni 12 719 2012 10.1021/nl203666a Detection beyond the Debye screening length in a high-frequency nanoelectronic biosensor 

  20. Microelectron. J. Pittino 45 1695 2014 10.1016/j.mejo.2014.09.011 Numerical simulation of the position and orientation effects on the impedance response of nanoelectrode array biosensors to DNA and PNA strands 

  21. Nat. Nanotechnol. Im 2 430 2007 10.1038/nnano.2007.180 A dielectric-modulated field-effect transistor for biosensing 

  22. Superlattices Microstruct. Ajay 88 225 2015 10.1016/j.spmi.2015.09.013 Analysis of gate underlap channel double gate MOS transistor for electrical detection of bio-molecules 

  23. TCAD Sentaurus Device User Manual, Synopsys, CA, 2013. 

  24. Appl. Phys. Lett. Lee 96 033703 2010 10.1063/1.3291617 An underlap field-effect transistor for electrical detection of influenza 

  25. Biosens. Bioelectron. Busse 17 704 2002 10.1016/S0956-5663(02)00027-1 Sensitivity studies for specific binding reactions using the biotin/streptavidin system by evanescent optical methods 

  26. Opt. Lett. Densmore 33 596 2008 10.1364/OL.33.000596 Spiral-path high-sensitivity silicon photonic wire molecular sensor with temperature-independent response 

  27. Biochip J. Kim 2 127 2008 Novel dielectric modulated field-effect transistor for label-free DNA detection 

  28. Electron Devices, IEEE Trans. Barbaro 53 158 2006 10.1109/TED.2005.860659 A charge-modulated FET for detection of biomolecular processes: conception, modeling, and simulation 

  29. Sens. Actuators B: Chem. Poghossian 111 470 2005 10.1016/j.snb.2005.03.083 Possibilities and limitations of label-free detection of DNA hybridization with field-effect-based devices 

  30. Microelectron. Eng. Makarona 85 1399 2008 10.1016/j.mee.2008.01.020 Vertical devices of self-assembled hybrid organic/inorganic monolayers based on tungsten polyoxometalates 

  31. IEEE Trans. Electron Devices Lin 50 2559 2013 10.1109/TED.2003.816910 Modeling the fringing electric field effect on the threshold voltage of FD SOI nMOS devices with the LDD/sidewall oxide spacer structure 

  32. Solid-State Electron. Jazaeri 82 103 2013 10.1016/j.sse.2013.02.001 Analytical model for ultra-thin body junctionless symmetric double gate MOSFETs in subthreshold regime 

  33. Sci. Rep. Nat. Jang 4 5284 2014 10.1038/srep05284 Performance enhancement of capacitive-coupling dual-gate ion-sensitive field-effect transistor in ultra-thin-body 

  34. Jpn. J. Appl. Phys. Dai 52 121301 2013 10.7567/JJAP.52.121301 A Back-Gate Controlled Silicon Nanowire Sensor with Sensitivity Improvement for DNA and pH Detection 

  35. Anal. Chim. Acta Zhang 749 1 2012 10.1016/j.aca.2012.08.035 Silicon nanowire biosensor and its applications in disease diagnostics: a review 

  36. Biosens. Bioelectron. Kim 77 695 2015 10.1016/j.bios.2015.10.008 Silicon nanowire Biosensors for detection of cardiac troponin I (cTnI) with High sensitivity 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로