$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

The self-activated radical doping effects on the catalyzed surface of amorphous metal oxide films 원문보기

Scientific reports, v.7, 2017년, pp.12469 -   

Kim, Hong Jae (School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749 Republic of Korea) ,  Tak, Young Jun (School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749 Republic of Korea) ,  Park, Sung Pyo (School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749 Republic of Korea) ,  Na, Jae Won (School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749 Republic of Korea) ,  Kim, Yeong-gyu (School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749 Republic of Korea) ,  Hong, Seonghwan (School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749 Republic of Korea) ,  Kim, Pyeong Hun (LG Display Co., Ltd., 1007, Deogeun-ri, Wollong-myeon, Paju-si, Gyeonggi-do 413-811 Republic of Korea) ,  Kim, Geon Tae (LG Display Co., Ltd., 1007, Deogeun-ri, Wollong-myeon, Paju-si, Gyeonggi-do 413-811 Republic of Korea) ,  Kim, Byeong Koo (LG Dis) ,  Kim, Hyun Jae

Abstract AI-Helper 아이콘AI-Helper

In this study, we propose a self-activated radical doping (SRD) method on the catalyzed surface of amorphous oxide film that can improve both the electrical characteristics and the stability of amorphous oxide films through oxidizing oxygen vacancy using hydroxyl radical which is a strong oxidizer. ...

참고문헌 (39)

  1. 1. Nomura K Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors Nature 2004 432 488 491 10.1038/nature03090 15565150 

  2. 2. Ahn BD A Novel Amorphous InGaZnO Thin Film Transistor Structure without Source/Drain Layer Deposition Jpn. J. Appl. Phys. 2009 48 03B019 10.1143/JJAP.48.03B019 

  3. 3. Fortunate E Wide-bandgap high-mobility ZnO thin-film transistors produced at room temperature Appl. Phys. Lett. 2004 85 2541 10.1063/1.1790587 

  4. 4. Jaakko L Far-UV Annealed Inkjet-Printed In 2 O 3 Semiconductor Layers for Thi n Film Transistors on a Flexible Polyethylene Naphthalate Substrate ACS Appl. Mater. Interfaces 2017 9 10 8774 8782 10.1021/acsami.6b14654 28211995 

  5. 5. Alexey AT Semiconducting metal oxide sensor array for the selective detection of combustion gases Sensors and Actuators B 2003 83 126 134 

  6. 6. Suresh A Bias stress stability of indium gallium zinc oxide channel based transparent thin film transistors Appl. Phys. Lett. 2008 92 033502 10.1063/1.2824758 

  7. 7. Cross RBM Investigating the stability of zinc oxide thin film transistors Appl. Phys. Lett 2006 89 263513 10.1063/1.2425020 

  8. 8. Park JS Electronic transport properties of amorphous indium-gallium-zinc oxide semiconductor upon exposure to water Appl. Phys. Lett. 2008 92 072104 10.1063/1.2838380 

  9. 9. Janotti A Oxygen vacancies in ZnO Appl. Phys. Lett. 2005 87 122102 10.1063/1.2053360 

  10. 10. Jeong JK Origin of threshold voltage instability in indium-gallium-zinc oxide thin film transistors Appl. Phys. Lett. 2008 93 123508 10.1063/1.2990657 

  11. 11. Ji KH Comparative study on light-induced bias stress instability of IGZO transistors with SiNx and SiO 2 gate dielectrics IEEE Electron Devices Lett. 2010 31 1404 1406 10.1109/LED.2010.2073439 

  12. 12. Tak YJ Reduction of activation temperature at 150 °C for IGZO films with improved electrical performance via UV-thermal treatment J. Inf. Disp. 2016 17 73 78 10.1080/15980316.2016.1172524 

  13. 13. Kim W-G High-pressure Gas Activation for Amorphous Indium-Gallium-Zinc-Oxide Thin-Film Transistors at 100 °C Sci. Rep. 2016 6 23039 10.1038/srep23039 26972476 

  14. 14. Dai M-K Multifunctionality of Giant and long-lasting Persistent Photoconductivity: Semiconductor-Conductor Transition in Graphene Nanosheets and Amorphous InGaZnO Hybrids ACS Photonics. 2015 2 1057 1064 10.1021/acsphotonics.5b00084 

  15. 15. Jones, C. W. et al . Applications of Hydrogen Peroxide and Derivatives. Royal Society of Chemistry (1999). 

  16. 16. Mardhiah MS Hydroxyl Radical-Assisted Decomposition and Oxidation in Solution-Processed Indium Oxide Thin-Film Transistors J. Mater. Chem. C. 2015 3 7499 7505 10.1039/C5TC01457C 

  17. 17. Afzal A Anatoxin-a degradation by advanced oxidation processes: Vacuum-UV at 172nm, photolysis using medium pressure UV and UV/H 2 O 2 Water Res. 2010 44 278 286 10.1016/j.watres.2009.09.021 19818467 

  18. 18. Andre T Mechanism of Hydrogen peroxide Pyrolysis Can. J. Chem. 1974 52 794 10.1139/v74-125 

  19. 19. Lousada CM Mechanism of H 2 O 2 Decomposition on Transition Metal oxide Surfaces J. Phys. Chem. C 2012 116 9533 9543 10.1021/jp300255h 

  20. 20. Hiroki A Decomposition of Hydrogen Peroxide at Water-Ceramic Oxide Interfaces J. Phys. Chem. B 2005 109 3364 3370 10.1021/jp046405d 16851366 

  21. 21. Sun R–D Photoinduced Surface Wettability Conversion of ZnO and TiO 2 Thin Films J. Phys. Chem. B 2001 105 1984 1990 10.1021/jp002525j 

  22. 22. Lee S Oxygen Defect-Induced Metastability in Oxide Semiconductors Probed by Gate Pulse Spectroscopy Sci. Rep. 2015 5 14902 10.1038/srep14902 26446400 

  23. 23. Dai M-K Multifunctionality of Giant and long-lasting Persistent Photoconductivity: Semiconductor-Conductor Transition in Graphene Nanosheets and Amorphous InGaZnO Hybrids ACS Photonics 2015 2 1057 1064 10.1021/acsphotonics.5b00084 

  24. 24. Robertson J Light induced instability mechanism in amorphous InGaZn oxide semiconductors Appl. Phys. Lett. 2014 104 162102 10.1063/1.4872227 

  25. 25. Rim YS Defect reduction in photon-accelerated negative bias instability of InGaZnO thin-film transistors by high-pressure water vapor annealing Appl. Phys. Lett. 2013 102 143503 10.1063/1.4801436 

  26. 26. Xu L Rational Hydrogenation for Enhanced Mobility and High Reliability on ZnO-Based Thin Film Transistors: From Simulation to Experiment ACS Appl. Mater. Interfaces 2016 5408 5415 

  27. 27. Chen W–T Oxygen-Dependent Instability and Annealing/Passivation Effects in Amorphous In-Ga-Zn-O Thin-Film Transistors IEEE Electron Devices Lett. 2011 32 1552 1554 10.1109/LED.2011.2165694 

  28. 28. Kim M–G High-Performance Solution-Processed Amorphous Zinc-Indium-Tin Oxide Thin-Film Transistors J. Am. Chem. Soc. 2010 132 10352 10364 10.1021/ja100615r 20662515 

  29. 29. Park JH Simple Method to Enhance Positive Bias Stress Stability of In−Ga−Zn−O Thin-Film Transistors Using a Vertically Graded Oxygen-Vacancy Active Layer ACS Appl. Mater. Interfaces 2014 21363 21368 

  30. 30. Kim M–H Photochemical Hydrogen Doping Induced Embedded Two-Dimensional Metallic Channel Formation in InGaZnO at Room Temperature ACS Nano 2014 6 21363 21368 

  31. 31. Tak YJ Enhanced Electrical Characteristics and Stability via Simultaneous Ultraviolet and Thermal Treatment of Passivated Amorphous In−Ga−Zn−O Thin-Film Transistors ACS Appl. Mater. Interfaces 2014 6399 6405 

  32. 32. Tak YJ Activation of sputter-processed indium-gallium-zinc oxide films by simultaneous ultraviolet and thermal treatments Sci. Rep. 2016 6 21869 10.1038/srep21869 26902863 

  33. 33. John RA Low-Temperature Chemical Transformations for High-Performance Solution-Processed Oxide Transistors Chem. Mater. 2016 28 8305 8313 10.1021/acs.chemmater.6b03499 

  34. 34. Kamiya T Doping and Defect Formation Energies in Amorphous Oxide Semiconductor a-InGaZnO 4 Studied by Density Functional Theory Phys. Status Solidi A. 2010 207 1698 1703 10.1002/pssa.200983772 

  35. 35. Aikawa S Effects of Dopants in InOx-Based Amorphous Oxide Semiconductors for Thin-Film Transistor Applications Appl. Phys. Lett. 2013 103 172105 10.1063/1.4822175 

  36. 36. Giamello E Evidence of Stable Hydroxyl Radicals and Other Oxygen Radical Species Generated by Interaction of Hydrogen Peroxide with Magnesium Oxide J. Phys. Chem. 1993 97 5735 5740 10.1021/j100123a045 

  37. 37. Lousada CM Kinetics, Mechanism, and Activation Energy of H 2 O 2 Decomposition on the Surface of ZrO 2 J. Phys. Chem. C. 2010 114 11202 11208 10.1021/jp1028933 

  38. 38. Suh M Reactions of Hydroxyl Radicals on Titania, Silica, Alumina, and Gold Surfaces J. Phys. Chem. B. 2000 104 2736 2742 10.1021/jp993653e 

  39. 39. Su W–Y Improving the property of ZnO nanorods using hydrogen peroxide solution J. Cryst. Growth 2008 310 2806 2809 10.1016/j.jcrysgro.2008.01.040 

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로