$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

A deep learning approach to estimate stress distribution: a fast and accurate surrogate of finite-element analysis 원문보기

Journal of the Royal Society, Interface, v.15 no.138, 2018년, pp.20170844 - 20170844  

Liang, Liang ,  Liu, Minliang ,  Martin, Caitlin ,  Sun, Wei

Abstract AI-Helper 아이콘AI-Helper

Structural finite-element analysis (FEA) has been widely used to study the biomechanics of human tissues and organs, as well as tissue–medical device interactions, and treatment strategies. However, patient-specific FEA models usually require complex procedures to set up and long computing ti...

주제어

참고문헌 (60)

  1. 10.1080/10255842.2012.746676 

  2. Capelli, C., Bosi, G. M., Cerri, E., Nordmeyer, J., Odenwald, T., Bonhoeffer, P., Migliavacca, F., Taylor, A. M., Schievano, S.. Patient-specific simulations of transcatheter aortic valve stent implantation. Medical & biological engineering & computing, vol.50, no.2, 183-192.

  3. Dwyer, Harry A., Matthews, Peter B., Azadani, Ali, Ge, Liang, Guy, T. Sloane, Tseng, Elaine E.. Migration forces of transcatheter aortic valves in patients with noncalcific aortic insufficiency. The Journal of thoracic and cardiovascular surgery, vol.138, no.5, 1227-1233.

  4. Morganti, S., Conti, M., Aiello, M., Valentini, A., Mazzola, A., Reali, A., Auricchio, F.. Simulation of transcatheter aortic valve implantation through patient-specific finite element analysis: Two clinical cases. Journal of biomechanics, vol.47, no.11, 2547-2555.

  5. Wang, Qian, Kodali, Susheel, Primiano, Charles, Sun, Wei. Simulations of transcatheter aortic valve implantation: implications for aortic root rupture. Biomechanics and modeling in mechanobiology, vol.14, no.1, 29-38.

  6. Wang, Q., Sirois, E., Sun, W.. Patient-specific modeling of biomechanical interaction in transcatheter aortic valve deployment. Journal of biomechanics, vol.45, no.11, 1965-1971.

  7. Morganti, S., Brambilla, N., Petronio, A.S., Reali, A., Bedogni, F., Auricchio, F.. Prediction of patient-specific post-operative outcomes of TAVI procedure: The impact of the positioning strategy on valve performance. Journal of biomechanics, vol.49, no.12, 2513-2519.

  8. de Jaegere, P., De Santis, G., Rodriguez-Olivares, R., Bosmans, J., Bruining, N., Dezutter, T., Rahhab, Z., El Faquir, N., Collas, V., Bosmans, B., Verhegghe, B., Ren, C., Geleinse, M., Schultz, C., van Mieghem, N., De Beule, M., Mortier, P.. Patient-Specific Computer Modeling to Predict Aortic Regurgitation After Transcatheter Aortic Valve Replacement. JACC. Cardiovascular interventions, vol.9, no.5, 508-512.

  9. Sun, Wei, Martin, Caitlin, Pham, Thuy. Computational Modeling of Cardiac Valve Function and Intervention. Annual review of biomedical engineering, vol.16, no.1, 53-76.

  10. Liang, Liu, Minliang, Martin, Caitlin, Elefteriades, John A., Sun, Wei. A machine learning approach to investigate the relationship between shape features and numerically predicted risk of ascending aortic aneurysm. Biomechanics and modeling in mechanobiology, vol.16, no.5, 1519-1533.

  11. Wang, Q., Primiano, C., McKay, R., Kodali, S., Sun, W.. CT Image-Based Engineering Analysis of Transcatheter Aortic Valve Replacement. JACC. Cardiovascular imaging, vol.7, no.5, 526-528.

  12. Liang, Liang, Kong, Fanwei, Martin, Caitlin, Pham, Thuy, Wang, Qian, Duncan, James, Sun, Wei. Machine learning–based 3‐D geometry reconstruction and modeling of aortic valve deformation using 3‐D computed tomography images. International journal for numerical methods in biomedical engineering, vol.33, no.5, e2827-.

  13. Zhang, S., Zhan, Y., Metaxas, D.N.. Deformable segmentation via sparse representation and dictionary learning. Medical image analysis, vol.16, no.7, 1385-1396.

  14. Staib, L.H., Duncan, J.S.. Model-based deformable surface finding for medical images. IEEE transactions on medical imaging, vol.15, no.5, 720-731.

  15. Yang, Jing, Duncan, James S.. 3D image segmentation of deformable objects with joint shape-intensity prior models using level sets. Medical image analysis, vol.8, no.3, 285-294.

  16. Pouch, A.M., Wang, H., Takabe, M., Jackson, B.M., Gorman, J.H., Gorman, R.C., Yushkevich, P.A., Sehgal, C.M.. Fully automatic segmentation of the mitral leaflets in 3D transesophageal echocardiographic images using multi-atlas joint label fusion and deformable medial modeling. Medical image analysis, vol.18, no.1, 118-129.

  17. Information processing in medical imaging Yu Y 208 2013 10.1007/978-3-642-38868-2_18 

  18. Litjens, Geert, Kooi, Thijs, Bejnordi, Babak Ehteshami, Setio, Arnaud Arindra Adiyoso, Ciompi, Francesco, Ghafoorian, Mohsen, van der Laak, Jeroen A.W.M., van Ginneken, Bram, Sánchez, Clara I.. A survey on deep learning in medical image analysis. Medical image analysis, vol.42, 60-88.

  19. 10.1007/978-3-319-24574-4_28 

  20. 10.1109/3DV.2016.79 

  21. Yefeng Zheng, John, M., Rui Liao, Nottling, A., Boese, J., Kempfert, J., Walther, T., Brockmann, G., Comaniciu, D.. Automatic Aorta Segmentation and Valve Landmark Detection in C-Arm CT for Transcatheter Aortic Valve Implantation. IEEE transactions on medical imaging, vol.31, no.12, 2307-2321.

  22. LeCun, Yann, Bengio, Yoshua, Hinton, Geoffrey. Deep learning. Nature, vol.521, no.7553, 436-444.

  23. Schmidhuber, J.. Deep learning in neural networks: An overview. Neural networks : the official journal of the International Neural Network Society, vol.61, 85-117.

  24. Gasser, T. Christian, Ogden, Ray W, Holzapfel, Gerhard A. Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. Journal of the Royal Society, Interface, vol.3, no.6, 15-35.

  25. Martin, C., Sun, W., Pham, T., Elefteriades, J.. Predictive biomechanical analysis of ascending aortic aneurysm rupture potential. Acta Biomaterialia: structure-property-function relationships in biomaterials, vol.9, no.12, 9392-9400.

  26. Heimann, T., Meinzer, H.P.. Statistical shape models for 3D medical image segmentation: A review. Medical image analysis, vol.13, no.4, 543-563.

  27. Proc. of the 13th Int. Conf. on Neural Information Processing Systems Dugas C 451 2000 

  28. Deep learning Goodfellow I 2016 

  29. Markovsky, I.. Structured low-rank approximation and its applications. Automatica : the journal of IFAC, the International Federation of Automatic Control, vol.44, no.4, 891-909.

  30. The 3rd international conference for learning representations Kingma DP 2015 

  31. Abadi M et al. 2015 TensorFlow: large-scale machine learning on heterogeneous distributed systems. (http://tensorflow.org/) 

  32. Proc. of the 34th int. conf. on Machine Learning, PMLR Tompson J 3424 2017 

  33. Hennigh O. 2017 Lat-Net: Compressing lattice Boltzmann flow simulations using deep neural networks. (https://arxiv.org/abs/1705.09036) 

  34. 10.1145/2939672.2939738 

  35. Itu, Lucian, Rapaka, Saikiran, Passerini, Tiziano, Georgescu, Bogdan, Schwemmer, Chris, Schoebinger, Max, Flohr, Thomas, Sharma, Puneet, Comaniciu, Dorin. A machine-learning approach for computation of fractional flow reserve from coronary computed tomography. Journal of applied physiology, vol.121, no.1, 42-52.

  36. Dieleman, Nikki, van der Kolk, Anja G., Zwanenburg, Jaco J.M., Harteveld, Anita A., Biessels, Geert J., Luijten, Peter R., Hendrikse, Jeroen. Imaging Intracranial Vessel Wall Pathology With Magnetic Resonance Imaging : Current Prospects and Future Directions. Circulation, vol.130, no.2, 192-201.

  37. 10.1201/b10688 Botsch M Kobbelt L Pauly M Alliez P Levy B. 2010 Polygon Mesh Processing A K Peters/CRC Press. 

  38. Wittek, A., Karatolios, K., Bihari, P., Schmitz-Rixen, T., Moosdorf, R., Vogt, S., Blase, C.. In vivo determination of elastic properties of the human aorta based on 4D ultrasound data. Journal of the mechanical behavior of biomedical materials, vol.27, 167-183.

  39. Wittek, A., Derwich, W., Karatolios, K., Fritzen, C.P., Vogt, S., Schmitz-Rixen, T., Blase, C.. A finite element updating approach for identification of the anisotropic hyperelastic properties of normal and diseased aortic walls from 4D ultrasound strain imaging. Journal of the mechanical behavior of biomedical materials, vol.58, 122-138.

  40. Liu, Minliang, Liang, Liang, Sun, Wei. A new inverse method for estimation of in vivo mechanical properties of the aortic wall. Journal of the mechanical behavior of biomedical materials, vol.72, 148-158.

  41. Joldes, G.R., Miller, K., Wittek, A., Doyle, B.. A simple, effective and clinically applicable method to compute abdominal aortic aneurysm wall stress. Journal of the mechanical behavior of biomedical materials, vol.58, 139-148.

  42. Miller, K., Lu, J.. On the prospect of patient-specific biomechanics without patient-specific properties of tissues. Journal of the mechanical behavior of biomedical materials, vol.27, 154-166.

  43. Pierce, David M., Fastl, Thomas E., Rodriguez-Vila, Borja, Verbrugghe, Peter, Fourneau, Inge, Maleux, Geert, Herijgers, Paul, Gomez, Enrique J., Holzapfel, Gerhard A.. A method for incorporating three-dimensional residual stretches/stresses into patient-specific finite element simulations of arteries. Journal of the mechanical behavior of biomedical materials, vol.47, 147-164.

  44. Genet, M., Rausch, M.K., Lee, L.C., Choy, S., Zhao, X., Kassab, G.S., Kozerke, S., Guccione, J.M., Kuhl, E.. Heterogeneous growth-induced prestrain in the heart. Journal of biomechanics, vol.48, no.10, 2080-2089.

  45. 10.1109/ICCV.2017.97 Sun C Shrivastava A Singh S Gupta A. 2017 Revisiting unreasonable effectiveness of data in deep learning era. (https://arxiv.org/abs/1707.02968) 

  46. J. Mach. Learn. Res. Bartlett PL 1823 9 2008 Classification with a reject option using a hinge loss 

  47. Geifman Y El-Yaniv R. 2017 Selective classification for deep neural networks. (https://arxiv.org/abs/1705.08500) 

  48. Cybenko, G.. Approximation by superpositions of a sigmoidal function. Mathematics of control, signals, and systems : MCSS, vol.2, no.4, 303-314.

  49. Sonoda, S., Murata, N.. Neural network with unbounded activation functions is universal approximator. Applied and computational harmonic analysis, vol.43, no.2, 233-268.

  50. Appl. Comput. Harmon. Anal. Shaham U Provable approximation properties for deep neural networks 

  51. Hornik, K.. Approximation capabilities of multilayer feedforward networks. Neural networks : the official journal of the International Neural Network Society, vol.4, no.2, 251-257.

  52. Yefeng Zheng, Barbu, A., Georgescu, B., Scheuering, M., Comaniciu, D.. Four-Chamber Heart Modeling and Automatic Segmentation for 3-D Cardiac CT Volumes Using Marginal Space Learning and Steerable Features. IEEE transactions on medical imaging, vol.27, no.11, 1668-1681.

  53. Yun Zhu, Papademetris, X., Sinusas, A.J., Duncan, J.S.. Segmentation of the Left Ventricle From Cardiac MR Images Using a Subject-Specific Dynamical Model. IEEE transactions on medical imaging, vol.29, no.3, 669-687.

  54. Int. Conf. on Learning Representations Toulon Dumoulin V 2017 

  55. 10.1109/ICCV.2011.6126474 

  56. Martin, Caitlin, Sun, Wei, Elefteriades, John. Patient-specific finite element analysis of ascending aorta aneurysms. American journal of physiology, Heart and circulatory physiology, vol.308, no.10, H1306-H1316.

  57. J. R. Stat. Soc. B Goodall C 285 53 1991 10.1111/j.2517-6161.1991.tb01825.x Procrustes methods in the statistical analysis of shape 

  58. Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.. Active Shape Models-Their Training and Application. Computer vision and image understanding : CVIU, vol.61, no.1, 38-59.

  59. Pham, T., Martin, C., Elefteriades, J., Sun, W.. Biomechanical characterization of ascending aortic aneurysm with concomitant bicuspid aortic valve and bovine aortic arch. Acta Biomaterialia: structure-property-function relationships in biomaterials, vol.9, no.8, 7927-7936.

  60. Barrett, Julia F, Keat, Nicholas. Artifacts in CT: recognition and avoidance.. Radiographics : a review publication of the Radiological Society of North America, Inc, vol.24, no.6, 1679-1691.

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로