$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

A computational investigation of thermal effect on lithium dendrite growth 원문보기

Energy conversion and management, v.161, 2018년, pp.193 - 204  

Yan, H.H. (State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University) ,  Bie, Y.H. (State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University) ,  Cui, X.Y. (State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University) ,  Xiong, G.P. (Department of Mechanical Engineering, University of Nevada) ,  Chen, L. (Department of Mechanical Engineering, Mississippi State University)

Abstract AI-Helper 아이콘AI-Helper

Abstract This paper aims to computationally investigate the thermal effect, combining the internal heat and the ambient temperature, on the lithium (Li) dendrite growth process. To achieve this, the recently developed phase-field Li-dendrite model is further extended by coupling with a heat transfe...

주제어

참고문헌 (50)

  1. Nature Armand 451 652 2008 10.1038/451652a Building better batteries 

  2. Electrochim Acta Lübke 231 247 2017 10.1016/j.electacta.2017.02.063 High energy lithium ion battery electrode materials; enhanced charge storage via both alloying and insertion processes 

  3. Energy Convers Manage Esmaeili 139 194 2017 10.1016/j.enconman.2017.02.052 Developing heat source term including heat generation at rest condition for Lithium-ion battery pack by up scaling information from cell scale 

  4. Energy Convers Manage Azizi 128 294 2016 10.1016/j.enconman.2016.09.081 Thermal management of a LiFePO4 battery pack at high temperature environment using a composite of phase change materials and aluminum wire mesh plates 

  5. Energy Convers Manage Qian 126 622 2016 10.1016/j.enconman.2016.08.063 Thermal performance of lithium-ion battery thermal management system by using mini-channel cooling 

  6. Energy Convers Manage Billaud 49 2447 2008 10.1016/j.enconman.2008.03.026 Electrochemical lithium insertion in graphite containing dispersed tin-antimony alloys 

  7. Energy Convers Manage Sun 92 184 2015 10.1016/j.enconman.2014.12.019 Numerical study on lithium titanate battery thermal response under adiabatic condition 

  8. Adv Energy Mater Li 2 87 2012 10.1002/aenm.201100519 Carbon nanotube-enhanced growth of silicon nanowires as an anode for high-performance lithium-ion batteries 

  9. J Solid State Electrochem Goodenough 16 2019 2012 10.1007/s10008-012-1751-2 Rechargeable batteries: challenges old and new 

  10. J Electrochem Soc Ely 160 A662 2013 10.1149/1.057304jes Heterogeneous nucleation and growth of lithium electrodeposits on negative electrodes 

  11. Electrochim Acta Nishida 100 333 2013 10.1016/j.electacta.2012.12.131 Optical observation of Li dendrite growth in ionic liquid 

  12. J Power Sources Seong 178 769 2008 10.1016/j.jpowsour.2007.12.062 The effects of current density and amount of discharge on dendrite formation in the lithium powder anode electrode 

  13. J Electrochem Soc Barai 164 A180 2017 10.1149/2.0661702jes Effect of initial state of lithium on the propensity for dendrite formation: a theoretical study 

  14. J Electrochem Soc Crowther 155 A806 2008 10.1149/1.2969424 Effect of electrolyte composition on lithium dendrite growth 

  15. J Electrochem Soc Ota 151 A427 2004 10.1149/1.1644136 Characterization of lithium electrode in lithium imides/ethylene carbonate, and cyclic ether electrolytes 

  16. J Electrochem Soc Liu 163 A592 2016 10.1149/2.0151605jes Interfacial study on solid electrolyte interphase at Li metal anode: implication for Li dendrite growth 

  17. Nat Energy Jung 2 16208 2017 10.1038/nenergy.2016.208 Lithium-free transition metal monoxides for positive electrodes in lithium-ion batteries 

  18. Chem Commun Luo 53 963 2017 10.1039/C6CC09248A A dual-functional polymer coating on a lithium anode for suppressing dendrite growth and polysulfide shuttling in Li-S batteries 

  19. J Electrochem Soc Chen 161 F3164 2014 10.1149/2.0171411jes A phase-field model coupled with large elasto-plastic deformation: application to lithiated silicon electrodes 

  20. Electrochim Acta Tatsuma 46 1201 2001 10.1016/S0013-4686(00)00706-4 Inhibition effect of covalently cross-linked gel electrolytes on lithium dendrite formation 

  21. J Electrochem Soc Monroe 150 A1377 2003 10.1149/1.1606686 Dendrite growth in lithium/polymer systems 

  22. J Power Sources Akolkar 232 23 2013 10.1016/j.jpowsour.2013.01.014 Mathematical model of the dendritic growth during lithium electrodeposition 

  23. J Power Sources Akolkar 246 84 2014 10.1016/j.jpowsour.2013.07.056 Modeling dendrite growth during lithium electrodeposition at sub-ambient temperature 

  24. J Phys Chem Lett Aryanfar 5 1721 2014 10.1021/jz500207a Dynamics of lithium dendrite growth and inhibition: pulse charging experiments and monte carlo calculations 

  25. Electrochem Soc Zhang 61 1 2014 Understanding and predicting the lithium dendrite formation in Li-ion batteries: phase field model 

  26. J Power Sources Chen 300 376 2015 10.1016/j.jpowsour.2015.09.055 Modulation of dendritic patterns during electrodeposition: a nonlinear phase-field model 

  27. J Power Sources Ely 272 581 2014 10.1016/j.jpowsour.2014.08.062 Phase field kinetics of lithium electrodeposits 

  28. Annu Rev Mater Res Boettinger 32 163 2002 10.1146/annurev.matsci.32.101901.155803 Phase-field simulation of solidification 

  29. J Power Sources Raj 343 119 2017 10.1016/j.jpowsour.2017.01.037 Current limit diagrams for dendrite formation in solid-state electrolytes for Li-ion batteries 

  30. Electrochim Acta Ota 49 565 2004 10.1016/j.electacta.2003.09.010 Effect of vinylene carbonate as additive to electrolyte for lithium metal anode 

  31. MRS Online Proc Libr Aryanfar 1680 02 2014 10.1557/opl.2014.890 Lithium dendrite growth control using local temperature variation 

  32. J Power Sources Zhang 273 1030 2015 10.1016/j.jpowsour.2014.09.181 Internal heating of lithium-ion batteries using alternating current based on the heat generation model in frequency domain 

  33. J Power Sources Petzl 275 799 2015 10.1016/j.jpowsour.2014.11.065 Lithium plating in a commercial lithium-ion battery - a low-temperature aging study 

  34. J Power Sources Vortmann-Westhoven 346 63 2017 10.1016/j.jpowsour.2017.02.028 Where is the lithium? Quantitative determination of the lithium distribution in lithium ion battery cells: Investigations on the influence of the temperature, the C-rate and the cell type 

  35. J Electrochem Soc Mogi 149 A385 2002 10.1149/1.1454138 In situ atomic force microscopy study on lithium deposition on nickel substrates at elevated temperatures 

  36. J Power Sources Ouyang 286 309 2015 10.1016/j.jpowsour.2015.03.178 Low temperature aging mechanism identification and lithium deposition in a large format lithium iron phosphate battery for different charge profiles 

  37. J Power Sources Yonemoto 343 207 2017 10.1016/j.jpowsour.2017.01.009 Temperature effects on cycling stability of Li plating/stripping on Ta-doped Li7La3Zr2O12 

  38. Acc Chem Res Bazant 46 1144 2013 10.1021/ar300145c Theory of chemical kinetics and charge transfer based on nonequilibrium thermodynamics 

  39. Phys Rev E Liang 86 051609 2012 10.1103/PhysRevE.86.051609 Nonlinear phase-field model for electrode-electrolyte interface evolution 

  40. Electrochim Acta Wu 83 227 2012 10.1016/j.electacta.2012.07.081 The effect of battery design parameters on heat generation and utilization in a Li-ion cell 

  41. J Electrochem Soc Doyle 143 1890 1996 10.1149/1.1836921 Comparison of modeling predictions with experimental data from plastic lithium ion cells 

  42. J Electrochem Soc Stewart 155 F13 2008 10.1149/1.2801378 The use of UV/vis absorption to measure diffusion coefficients in LiPF[sub 6] electrolytic solutions 

  43. ECS Trans Nishida 6 1 2008 10.1149/1.2831921 Diffusivity measurement of LiPF6, LiTFSI, LiBF4 in PC 

  44. J Power Sources Guo 195 2393 2010 10.1016/j.jpowsour.2009.10.090 Three-dimensional thermal finite element modeling of lithium-ion battery in thermal abuse application 

  45. Acta Mater Raghavan 112 303 2016 10.1016/j.actamat.2016.03.063 Numerical modeling of heat-transfer and the influence of process parameters on tailoring the grain morphology of IN718 in electron beam additive manufacturing 

  46. J Appl Phys Zhang 93 3022 2003 10.1063/1.1540744 Modeling of heat transfer and fluid flow during gas tungsten arc spot welding of low carbon steel 

  47. Mater Sci Eng A Bontha 513-514 311 2009 10.1016/j.msea.2009.02.019 Effects of process variables and size-scale on solidification microstructure in beam-based fabrication of bulky 3D structures 

  48. Int Mater Rev Rappaz 34 93 1989 10.1179/imr.1989.34.1.93 Modelling of microstructure formation in solidification processes 

  49. J Electrochem Soc Crowther 155 A806 2008 10.1149/1.2969424 Effect of electrolyte composition on lithium dendrite growth 

  50. J Electrochem Soc Tang 163 A1660 2016 10.1149/2.0891608jes In situ scanning electron microscopy characterization of the mechanism for Li dendrite growth 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD(Hybrid)

저자가 APC(Article Processing Charge)를 지불한 논문에 한하여 자유로운 이용이 가능한, hybrid 저널에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로