$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Unsupervised learning of digit recognition using spike-timing-dependent plasticity 원문보기

Frontiers in computational neuroscience, v.9, 2015년, pp.99 -   

Diehl, Peter U. ,  Cook, Matthew

Abstract AI-Helper 아이콘AI-Helper

In order to understand how the mammalian neocortex is performing computations, two things are necessary; we need to have a good understanding of the available neuronal processing units and mechanisms, and we need to gain a better understanding of how those mechanisms are combined to build functionin...

주제어

참고문헌 (49)

  1. Abbott L. Song S. ( 1999 ). Temporally asymmetric hebbian learning, spike timing and neuronal response variability . Adv. Neural Inform. Process. Syst. 11 , 69 – 75 . 

  2. Azghadi M. R. Iannella N. Al-Sarawi S. Abbott D. ( 2014 ). Tunable low energy, compact and high performance neuromorphic circuit for spike-based synaptic plasticity . PLoS ONE 9 : e88326 . 10.1371/journal.pone.0088326 24551089 

  3. Barroso L. A. ( 2005 ). The price of performance . Queue 3 , 48 – 53 . 10.1145/1095408.1095420 

  4. Benjamin B. V. Gao P. McQuinn E. Choudhary S. Chandrasekaran A. R. Bussat J. ( 2014 ). Neurogrid: a mixed-analog-digital multichip system for large-scale neural simulations . Proc. IEEE 102 , 699 – 716 . 10.1109/JPROC.2014.2313565 

  5. Beyeler M. Dutt N. D. Krichmar J. L. ( 2013 ). Categorization and decision-making in a neurobiologically plausible spiking network using a stdp-like learning rule . Neural Netw. 48 , 109 – 124 . 10.1016/j.neunet.2013.07.012 23994510 

  6. Bi G.-Q. Poo M.-M. ( 1998 ). Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type . J. Neurosci. 18 , 10464 – 10472 . 9852584 

  7. Bichler O. Querlioz D. Thorpe S. J. Bourgoin J.-P. Gamrat C. ( 2012 ). Extraction of temporally correlated features from dynamic vision sensors with spike-timing-dependent plasticity . Neural Netw. 32 , 339 – 348 . 10.1016/j.neunet.2012.02.022 22386501 

  8. Brader J. M. Senn W. Fusi S. ( 2007 ). Learning real-world stimuli in a neural network with spike-driven synaptic dynamics . Neural Comput. 19 , 2881 – 2912 . 10.1162/neco.2007.19.11.2881 17883345 

  9. Coates A. Ng A. Y. ( 2012 ). Learning feature representations with k-means , in Neural Networks: Tricks of the Trade , Vol. 7700 , eds Montavon G. Orr G. B. Müller K. R. ( Berlin; Heidelberg : Springer ), 561 – 580 . 10.1007/978-3-642-35289-8_30 

  10. Diehl P. U. Cook M. ( 2014 ). Efficient implementation of stdp rules on spinnaker neuromorphic hardware , in Neural Networks (IJCNN), 2014 International Joint Conference on ( Beijing : IEEE ), 4288 – 4295 . 

  11. Diehl P. U. Neil D. Binas J. Cook M. Liu S.-C. Pfeiffer M. ( 2015 ). Fast-classifying, high-accuracy spiking deep networks through weight and threshold balancing , in Neural Networks (IJCNN), 2015 International Joint Conference on ( Killarney : IEEE ). 

  12. Fritzke B. ( 1995 ). A growing neural gas network learns topologies . Adv. Neural Inform. Process. Syst. 7 , 625 – 632 . 

  13. Galluppi F. Lagorce X. Stromatias E. Pfeiffer M. Plana L. A. Furber S. B. . ( 2014 ). A framework for plasticity implementation on the spinnaker neural architecture . Front. Neurosci. 8 : 429 . 10.3389/fnins.2014.00429 25653580 

  14. Goodhill G. J. Barrow H. G. ( 1994 ). The role of weight normalization in competitive learning . Neural Comput. 6 , 255 – 269 . 10.1162/neco.1994.6.2.255 

  15. Goodman D. Brette R. ( 2008 ). Brian: a simulator for spiking neural networks in python . Front. Neuroinform. 2 : 5 . 10.3389/neuro.11.005.2008 19115011 

  16. Habenschuss S. Bill J. Nessler B. ( 2012 ). Homeostatic plasticity in bayesian spiking networks as expectation maximization with posterior constraints , in Advances in Neural Information Processing Systems , eds Bartlett P. Pereira F. C. N. Burges C. J. C. Bottou L. Weinberger K. Q. ( Lake Tahoe, CA : Nips Foundation ), 773 – 781 . 

  17. Hinton G. E. Salakhutdinov R. R. ( 2006 ). Reducing the dimensionality of data with neural networks . Science 313 , 504 – 507 . 10.1126/science.1127647 16873662 

  18. Hussain S. Liu S.-C. Basu A. ( 2014 ). Improved margin multi-class classification using dendritic neurons with morphological learning , in Circuits and Systems (ISCAS), 2014 IEEE International Symposium on ( Melbourne, VIC : IEEE ), 2640 – 2643 . 

  19. Indiveri G. Chicca E. Douglas R. ( 2006 ). A vlsi array of low-power spiking neurons and bistable synapses with spike-timing dependent plasticity . Neural Netw. IEEE Trans. 17 , 211 – 221 . 10.1109/TNN.2005.860850 16526488 

  20. Javed F. He Q. Davidson L. E. Thornton J. C. Albu J. Boxt L. . ( 2010 ). Brain and high metabolic rate organ mass: contributions to resting energy expenditure beyond fat-free mass . Am. J. Clin. Nutr. 91 , 907 – 912 . 10.3945/ajcn.2009.28512 20164308 

  21. Jug F. ( 2012 ). On Competition and Learning in Cortical Structures . Ph.D. thesis, Diss., Eidgenössische Technische Hochschule ETH Zürich, Nr. 20194, 2012. 

  22. Khan M. Lester D. Plana L. Rast A. Jin X. Painkras E. ( 2008 ). Spinnaker: mapping neural networks onto a massively-parallel chip multiprocessor , in Neural Networks, 2008. IJCNN 2008. (IEEE World Congress on Computational Intelligence). IEEE International Joint Conference on ( Hong Kong : IEEE ), 2849 – 2856 . 

  23. Kheradpisheh S. R. Ganjtabesh M. Masquelier T. ( 2015 ). Bio-inspired unsupervised learning of visual features leads to robust invariant object recognition . arXiv 1504.03871 , 1 – 19 . 

  24. Kohonen T. ( 1990 ). The self-organizing map . Proc. IEEE 78 , 1464 – 1480 . 

  25. Larochelle H. Bengio Y. Louradour J. Lamblin P. ( 2009 ). Exploring strategies for training deep neural networks . J. Mach. Learn. Res. 10 , 1 – 40 . 

  26. LeCun Y. Bottou L. Bengio Y. Haffner P. ( 1998 ). Gradient-based learning applied to document recognition . Proc. IEEE 86 , 2278 – 2324 . 10.1109/5.726791 

  27. Leñero-Bardallo J. A. Serrano-Gotarredona T. Linares-Barranco B. ( 2010 ). A signed spatial contrast event spike retina chip , in Circuits and Systems (ISCAS), Proceedings of 2010 IEEE International Symposium on ( Paris : IEEE ), 2438 – 2441 . 

  28. Lichtsteiner P. Posch C. Delbruck T. ( 2008 ). A 128 × 128 120 db 15 μs latency asynchronous temporal contrast vision sensor . Solid State Circ. IEEE J. 43 , 566 – 576 . 10.1109/JSSC.2007.914337 

  29. Masquelier T. Thorpe S. J. ( 2007 ). Unsupervised learning of visual features through spike timing dependent plasticity . PLoS Comput. Biol. 3 : e31 . 10.1371/journal.pcbi.0030031 17305422 

  30. Mayr C. Partzsch J. Noack M. Hanzsche S. Scholze S. Hoppner S. . ( 2015 ). A biological-realtime neuromorphic system in 28 nm CMOS using low-leakage switched capacitor circuits . IEEE Trans. Biomed. Circuits Syst. . [Epub ahead of print]. 10.1109/TBCAS.2014.2379294 25680215 

  31. McClelland J. L. Rumelhart D. E. Asanuma C. Kawamoto A. H. Smolensky P. Crick F. H. C. . ( 1986 ). Parallel distributed processing . Explor. Microstruct. Cogn. 2 , 1 – 567 . 19358304 

  32. Merolla P. Arthur J. Akopyan F. Imam N. Manohar R. Modha D. S. ( 2011 ). A digital neurosynaptic core using embedded crossbar memory with 45pj per spike in 45nm , in Custom Integrated Circuits Conference (CICC), 2011 IEEE ( San Jose, CA : IEEE ), 1 – 4 . 

  33. Merolla P. A. Arthur J. V. Alvarez-Icaza R. Cassidy A. S. Sawada J. Akopyan F. . ( 2014 ). A million spiking-neuron integrated circuit with a scalable communication network and interface . Science 345 , 668 – 673 . 10.1126/science.1254642 25104385 

  34. Morrison A. Aertsen A. Diesmann M. ( 2007 ). Spike-timing-dependent plasticity in balanced random networks . Neural Comput. 19 , 1437 – 1467 . 10.1162/neco.2007.19.6.1437 17444756 

  35. Neftci E. Das S. Pedroni B. Kreutz-Delgado K. Cauwenberghs G. ( 2013 ). Event-driven contrastive divergence for spiking neuromorphic systems . Front. Neurosci. 7 : 272 . 10.3389/fnins.2013.00272 24574952 

  36. Neil D. Liu S.-C. ( 2014 ). Minitaur, an event-driven fpga-based spiking network accelerator . Very Large Scale Int. Syst. IEEE Trans. 22 , 2621 – 2628 . 10.1109/TVLSI.2013.2294916 

  37. Nessler B. Pfeiffer M. Buesing L. Maass W. ( 2013 ). Bayesian computation emerges in generic cortical microcircuits through spike-timing-dependent plasticity . PLoS Comput. Biol. 9 : e1003037 . 10.1371/journal.pcbi.1003037 23633941 

  38. O'Connor P. Neil D. Liu S.-C. Delbruck T. Pfeiffer M. ( 2013 ). Real-time classification and sensor fusion with a spiking deep belief network . Front. Neurosci. 7 : 178 . 10.3389/fnins.2013.00178 24115919 

  39. O'Reilly R. C. Munakata Y. ( 2000 ). Computational Explorations in Cognitive Neuroscience: Understanding the Mind by Simulating the Brain . MITpress . 

  40. Park J. Ha S. Yu T. Neftci E. Cauwenberghs G. ( 2014 ). A 65k-neuron 73-mevents/s 22-pj/event asynchronous micro-pipelined integrate-and-fire array transceiver , in Biomedical Circuits and Systems Conference (BioCAS) ( Lausanne : IEEE ). 

  41. Pfister J.-P. Gerstner W. ( 2006 ). Triplets of spikes in a model of spike timing-dependent plasticity . J. Neurosci. 26 , 9673 – 9682 . 10.1523/JNEUROSCI.1425-06.2006 16988038 

  42. Posch C. Matolin D. Wohlgenannt R. ( 2010 ). High-dr frame-free pwm imaging with asynchronous aer intensity encoding and focal-plane temporal redundancy suppression , in Circuits and Systems (ISCAS), Proceedings of 2010 IEEE International Symposium on ( Paris : IEEE ), 2430 – 2433 . 

  43. Querlioz D. Bichler O. Dollfus P. Gamrat C. ( 2013 ). Immunity to device variations in a spiking neural network with memristive nanodevices . Nanotechnol. IEEE Trans. 12 , 288 – 295 . 10.1109/TNANO.2013.2250995 

  44. Querlioz D. Bichler O. Gamrat C. ( 2011a ). Simulation of a memristor-based spiking neural network immune to device variations , in Neural Networks (IJCNN), The 2011 International Joint Conference on ( San Jose, CA : IEEE ), 1775 – 1781 . 

  45. Querlioz D. Dollfus P. Bichler O. Gamrat C. ( 2011b ). Learning with memristive devices: How should we model their behavior? , in Nanoscale Architectures (NANOARCH), 2011 IEEE/ACM International Symposium on ( San Diego, CA : IEEE ), 150 – 156 . 

  46. Rahimi Azghadi M. Iannella N. Al-Sarawi S. F. Indiveri G. Abbott D. ( 2014 ). Spike-based synaptic plasticity in silicon: Design, implementation, application, and challenges . Proc. IEEE 102 , 717 – 737 . 10.1109/JPROC.2014.2314454 

  47. Rumelhart D. E. Hinton G. E. Williams R. J. ( 1985 ). Learning internal representations by error propagation . Technical report, DTIC Document. 

  48. Zhang W. Linden D. J. ( 2003 ). The other side of the engram: experience-driven changes in neuronal intrinsic excitability . Nat. Rev. Neurosci. 4 , 885 – 900 . 10.1038/nrn1248 14595400 

  49. Zhao B. Ding R. Chen S. Linares-Barranco B. Tang H. ( 2014 ). Feedforward categorization on AER motion events using cortex-like features in a spiking neural network . IEEE Trans. Neural Netw. Learn. Sys. 54 , 981 – 993 . 10.1109/TNNLS.2014.2362542 25347889 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로