$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Improved performance of Pseudomonas aeruginosa catalyzed MFCs with graphite/polyester composite electrodes doped with metal ions for azo dye degradation

Chemical engineering journal, v.343, 2018년, pp.258 - 269  

Narayanasamy, Saranya (Corresponding author.) ,  Jayaprakash, Jayapriya

Abstract AI-Helper 아이콘AI-Helper

Abstract High internal resistance that reduces the power produced in the microbial fuel cells (MFCs) is mainly due to the low electron transfer between the bacterial catalysts and the anode/cathode. In this study, a bulk modified Graphite Polyester composite electrodes (GPECE) doped with metal salt...

주제어

참고문헌 (45)

  1. Renew. Sustain. Energy Rev. Sharaf 32 810 2014 10.1016/j.rser.2014.01.012 An overview of fuel cell technology: fundamentals and applications 

  2. Bioelectrochemistry Qiao 117 34 2017 10.1016/j.bioelechem.2017.04.003 Biofilm promoted current generation of Pseudomonas aeruginosa microbial fuel cell via improving the interfacial redox reaction of phenazines 

  3. Chem. Eng. J. Prabhu 243 564 2014 10.1016/j.cej.2013.12.103 Characterization and performance study of sulfonated poly ether ether ketone/Fe3O4 nano composite membrane as electrolyte for microbial fuel cell 

  4. Biotechnol. Adv. Wang 31 1796 2013 10.1016/j.biotechadv.2013.10.001 A comprehensive review of microbial electrochemical systems as a platform technology 

  5. Can. J. Chem. Eng. Jayapriya 92 610 2014 10.1002/cjce.21895 The role of electrode material in capturing power generated in Pseudomonas catalysed fuel cells 

  6. Mater. Renew. Sustain. Energy Mustakeem 4 22 1 2015 Electrode materials for microbial fuel cells: nanomaterial approach 

  7. Bioresour. Technol. Huang 102 316 2011 10.1016/j.biortech.2010.06.096 Electron transfer mechanisms, new applications, and performance of biocathode microbial fuel cells 

  8. Chem. Eng. J. Mohamed 2017 10.1016/j.cej.2017.05.166 Cobalt Oxides-Sheathed Cobalt Nano flakes to Improve Surface Properties of Carbonaceous Electrodes Utilized in Microbial Fuel Cells 

  9. Bioenergy Oppor. Challenges Jayapriya 87 2016 Challenges to and opportunities in microbial fuel cells in microbial fuel cells 

  10. Environ. Sci. Technol. Logan 40 5172 2006 10.1021/es0627592 Microbial fuel cells-challenges and applications 

  11. Chem. Eng. J. Gupta 307 729 2017 10.1016/j.cej.2016.08.130 Simultaneous Cr (VI) reduction and bioelectricity generation using microbial fuel cell based on alumina-nickel nanoparticles-dispersed carbon nanofiber electrode 

  12. Energy Environ. Sci. Qiao 3 544 2010 10.1039/b923503e Electrocatalysis in microbial fuel cells-from electrode material to direct electrochemistry 

  13. Chem. Eng. J. You 309 489 2017 10.1016/j.cej.2016.10.051 Recent progress of carbonaceous materials in fuel cell applications: an overview 

  14. Biotechnol. Bioeng. Park 81 348 2003 10.1002/bit.10501 Improved fuel cell and electrode designs for producing electricity from microbial degradation 

  15. Biosens. Bioelectron. Lowy 21 2058 2006 10.1016/j.bios.2006.01.033 Harvesting energy from the marine sediment-water interface II 

  16. Mater. Horizons. Yuan 3 382 2016 10.1039/C6MH00093B Oxygen reduction reaction catalysts used in microbial fuel cells for energy-efficient wastewater treatment: a review 

  17. J. Mater. Chem. A Chen 3 19402 2015 10.1039/C5TA03318G Improved power output by incorporating polyvinyl alcohol into the anode of a microbial fuel cell 

  18. Compos. Sci. Technol. Liu 120 66 2015 10.1016/j.compscitech.2015.10.017 Styrene-free unsaturated polyesters for hemp fi bre composites 

  19. J. Hazard. Mater. Aravind 318 203 2016 10.1016/j.jhazmat.2016.07.028 An integrated (electro- and bio-oxidation) approach for remediation of industrial wastewater containing azo-dyes: understanding the degradation mechanism and toxicity assessment 

  20. Environ. Chem. Lett. Ilamathi 1 2017 Microbial fuel cells for dye decolorization 

  21. J. Taiwan Inst. Chem. Eng. Saratale 42 138 2011 10.1016/j.jtice.2010.06.006 Bacterial decolorization and degradation of azo dyes: A review 

  22. J. Proteome Res. Kamath 15 2152 2016 10.1021/acs.jproteome.6b00058 Pseudomonas aeruginosa cell membrane protein expression from phenotypically diverse cystic fibrosis isolates demonstrates host-specific adaptations 

  23. Compos. Part B Eng. Jayapriya 43 1329 2012 10.1016/j.compositesb.2011.10.019 Preparation and characterization of biocompatible carbon electrodes 

  24. Bioresour. Technol. Jayapriya 124 23 2012 10.1016/j.biortech.2012.08.034 Use of non-native phenazines to improve the performance of Pseudomonas aeruginosa MTCC 2474 catalysed fuel cells 

  25. Alpha 1989 Standard Methods for the Examination of Water and Wastewater 

  26. J. Mater. Chem. Liu 21 8612 2011 10.1039/c1jm10717h Preparation of polyester/reduced graphene oxide composites via in situ melt polycondensation and simultaneous thermo-reduction of graphene oxide 

  27. J. Phys. Chem. B Henry 109 17224 2005 10.1021/jp0523524 Adhesion between graphite and modified polyester surfaces: a theoretical study 

  28. Polym. J. Konwar 43 565 2011 10.1038/pj.2011.19 Hyperbranched polyether core containing vegetable oil-modified polyester and its clay nanocomposites 

  29. J. Biomed. Mater. Res. Part A Braem 102 215 2014 10.1002/jbm.a.34688 Staphylococcal biofilm growth on smooth and porous titanium coatings for biomedical applications 

  30. J. Mater. Chem. A Divya 2 4912 2014 10.1039/C3TA15181F Platinum-graphene hybrid nanostructure as anode and cathode electrocatalysts in proton exchange membrane fuel cells 

  31. J. Mater. Sci. Li 46 5595 2011 10.1007/s10853-011-5572-y Review on polymer/graphite nanoplatelet nanocomposites 

  32. Carbon N. Y. Chan 89 8 2015 10.1016/j.carbon.2015.03.026 Low-temperature synthesized nitrogen-doped iron/iron carbide/partly-graphitized carbon as stable cathode catalysts for enhancing bioelectricity generation 

  33. Dalt. Trans. Yin 44 11147 2015 10.1039/C5DT01059D Fabrication of a novel nanocomposite Ag/graphene@SiO2-NaLuF4:Yb, Gd, Er for large enhancement upconversion luminescence 

  34. Bioresour. Technol. Zhu 102 7324 2011 10.1016/j.biortech.2011.04.062 Electricity generation in a membrane-less microbial fuel cell with down-flow feeding onto the cathode 

  35. J. Saudi Chem. Soc. Abdallh 18 387 2014 10.1016/j.jscs.2011.08.001 Study the electrical conductivity of crosslinked polyester doped with different metal salts 

  36. Biosens. Bioelectron. Ouitrakul 23 721 2007 10.1016/j.bios.2007.08.012 Impedance analysis of bio-fuel cell electrodes 

  37. LWT Food Sci. Technol. Simoes 43 573 2010 10.1016/j.lwt.2009.12.008 A review of current and emergent biofilm control strategies 

  38. Microbiology Yang 153 1318 2007 10.1099/mic.0.2006/004911-0 Effects of iron on DNA release and biofilm development by Pseudomonas aeruginosa 

  39. Am. J. Med. Sci. Conrad 318 213 1999 10.1016/S0002-9629(15)40626-3 Iron absorption and transport 

  40. Microbiol. Res. Lee 169 888 2014 10.1016/j.micres.2014.05.005 ZnO nanoparticles inhibit Pseudomonas aeruginosa biofilm formation and virulence factor production 

  41. J. Bacteriol. Frangipani 190 6706 2008 10.1128/JB.00450-08 Adaptation of Aerobically Growing Pseudomonas aeruginosa to copper starvation 

  42. J. Hazard. Mater. Gikas 159 187 2008 10.1016/j.jhazmat.2008.02.048 Single and combined effects of nickel (Ni(II)) and cobalt (Co(II)) ions on activated sludge and on other aerobic microorganisms: a review 

  43. Microbiol. Res. Song 161 355 2006 10.1016/j.micres.2006.01.004 Influence of magnesium ions on biofilm formation by Pseudomonas fluorescens 

  44. Environ. Sci. Technol. Rabaey 39 3401 2005 10.1021/es048563o Microbial phenazine production enhances electron transfer in biofuel cells 

  45. Environ. Prog. Sustain Energy Jayaprakash 35 1623 2016 10.1002/ep.12397 Decolorization and degradation of monoazo and diazo dyes in Pseudomonas catalyzed microbial fuel cell 

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로