$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Big Data Proprietary Platforms. The Case of Oracle Exadata 원문보기

The review of economic and business studies, v.11 no.1, 2018년, pp.45 - 78  

Fotache, Marin ,  Tică, Alexandru ,  Hrubaru, Ionuț ,  Spînu, Teodor Marius

Abstract

AbstractThe most prominent Big Data solutions – such as NoSQL systems, Hadoop Frameworks, Spark, etc. – have been open-sourced. Nevertheless, commercial providers have targeted niches of this huge market with products more or less viable and affordable. This paper addresses the problem of benchmarking Big Data platforms with a focus on Oracle Exadata solution provided by one the most important data technologies vendor. Many classical benchmark approaches, such as TPC-H, are based on a predefined set of queries, and consequently they are not prone to predictive modeling. By contrast, for the TPC-H benchmark schema, we generate a set of 500 random queries containing not only tuple filters (WHERE), but also tuple grouping (GROUP BY) and group filters (HAVING), we collected results of the queries execution on four Oracle Exadata settings. Query duration was the outcome variable. Various query parameters, such as the number of joins, the number of attributes of different types within SELECT and WHERE clauses, and also some environment metrics served as predictors. Results were interpreted using exploratory data analysis and also Multivariate Adaptive Regression Splines (MARS) for both predicting the performance and explaining the main drivers of the system performance.

Keyword

참고문헌 (22)

  1. 10.1007/978-1-4302-4915-3 1. Clarke, J., 2013. Oracle Exadata Recipes. New York: Apress. 

  2. 2. Farooq, T., Kim, C., Vengurlekar, N., Avantsa, S., Harrison, G., Hussain, S.J., 2015. Oracle Exadata Expert’s Handbook. Boston: Addison-Wesley. 

  3. 3. Fotache, M. and Hrubaru, I. 2016a. Big Data Technology on Medium-Sized Data. Preliminary Results for Non-Aggregate Queries. Proc. of the 15th International Conference on Informatics in Economy (IE 2016), Cluj-Napoca, Romania, June 2-5, 2016, pp.273-278 

  4. 10.1515/saeb-2016-0134 4. Fotache, M. and Hrubaru, I., 2016b. Performance Analysis of Two Big Data Technologies on a Cloud Distributed Architecture. Results for Non-Aggregate Queries on Medium-Sized Data. Scientific Annals of Economics and Business, 63(SI), pp. 21-50. Available at: <http://saeb.feaa.uaic.ro/index.php/saeb/article/view/91/35> [Accessed 1 May 2017] 

  5. 10.1214/aos/1176347963 5. Friedman, J. H., 1991. Multivariate Adaptive Regression Splines. The Annals of Statistics, 19(1), pp. 1-14110.1214/aos/1176347963 

  6. 6. Friedman, J. H., 1993. Fast MARS. Technical Report No 110, Stanford University, Laboratory for Computational Statistics, Available at: <http://www.milbo.users.sonic.net/earth/Friedman-FastMars.pdf> [Accessed 1 September 2017] 

  7. 7. Greenwald, R., Stackowiak, R., Alam, M. & Bhuller, M., 2011. Achieving Extreme 

  8. 8. Performance with Oracle Exadata. New York: Oracle Press. 

  9. 9. Hastie, T., Tibshirani, R., Friedman, J.H., 2008. The Elements of Statistical Learning - Data Mining, Inference, and Prediction, 2nd edition, Springer. 

  10. 10. Kejser, T., 2014. TPC-H: Data And Query Generation, Available at: <http://kejser.org/tpc-h-data-and-query-generation/>, [Accessed 12 March 2017] 

  11. 11. Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., and Leisch, F. 2017. e1071: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien. R package version 1.6-8. Available at: https://CRAN.R-project.org/package=e1071 [Accessed 9 January 2018] 

  12. 12. Milborrow, S., 2017a. earth: Multivariate Adaptive Regression Splines (Derived from mda:mars by Trevor Hastie and Rob Tibshirani. Uses Alan Miller’s Fortran utilities with Thomas Lumley’s leaps wrapper). R package version 4.5.1. Available at: <https://CRAN.R-project.org/package=earth> [Accessed 9 August 2017] 

  13. 13. Milborrow, S., 2017b. plotmo: Plot a Model’s Response and Residuals. R package version 3.3.4. Available at: <https://CRAN.R-project.org/package=plotmo> [Accessed 9 August 2017] 

  14. 14. Milborrow, S., 2017c. Notes on the earth Package. Available at: <http://www.milbo.org/doc/earth-notes.pdf> [Accessed 9 August 2017] 

  15. 15. Oracle, 2012. Oracle Exadata Machine X2-2. [Online] 

  16. 16. Available at: <http://www.oracle.com/technetwork/database/exadata/dbmachine-x2-2-datasheet-175280.pdf> [Accessed 5 October 2017]. 

  17. 17. R Core Team, 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: <https://www.R-project.org/>, [Accessed 1 February 2017] 

  18. 18. TPC 2014. TPC Benchmark H (Decision Support) Standard Specification Revision 2.17.1, 2014, Available at: <http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-h_v2.17.1.pdf> [Accessed 21 January 2017] 

  19. 19. Wei, T. and Simko, V., 2016. corrplot: Visualization of a Correlation Matrix. R package version 0.77. Available at: <https://CRAN.R-project.org/package=corrplot> [Accessed 22 September 2016] 

  20. 10.1007/978-3-319-24277-4_9 20. Wickham, H., 2016. ggplot2: Elegant Graphics for Data Analysis, 2nd Edition, New York: Springer 

  21. 21. Wickham, H., 2017a. stringr: Simple, Consistent Wrappers for Common String Operations. R package version 1.2.0. Available at: <https://CRAN.R-project.org/package=stringr>> [Accessed 10 April 2017] 

  22. 10.32614/CRAN.package.tidyverse 22. Wickham, H., 2017b. tidyverse: Easily Install and Load ‘Tidyverse’ Packages. R package version 1.1.1. Available at: <https://CRAN.R-project.org/package=tidyverse> [Accessed 10 April 2017] 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로