$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Antioxidant Properties of Probiotic Bacteria 원문보기

Nutrients, v.9 no.6, 2017년, pp.521 -   

Wang, Yang ,  Wu, Yanping ,  Wang, Yuanyuan ,  Xu, Han ,  Mei, Xiaoqiang ,  Yu, Dongyou ,  Wang, Yibing ,  Li, Weifen

Abstract AI-Helper 아이콘AI-Helper

Oxidative stress defines a condition in which the prooxidant–antioxidant balance in the cell is disturbed, resulting in DNA hydroxylation, protein denaturation, lipid peroxidation, and apoptosis, ultimately compromising cells’ viability. Probiotics have been known for many beneficial health e...

Keyword

참고문헌 (133)

  1. 1. Schieber M. Chandel N.S. ROS function in redox signaling and oxidative stress Curr. Biol. 2014 24 R453 R462 10.1016/j.cub.2014.03.034 24845678 

  2. 2. Mishra V. Shah C. Mokashe N. Chavan R. Yadav H. Prajapati J. Probiotics as potential antioxidants: A systematic review J. Agric. Food Chem. 2015 63 3615 3626 10.1021/jf506326t 25808285 

  3. 3. Luo D. Fang B. Structural identification of ginseng polysaccharides and testing of their antioxidant activities Carbohydr. Polym. 2008 72 376 381 10.1016/j.carbpol.2007.09.006 

  4. 4. Williams N.T. Probiotics Am. J. Health Syst. Pharm. 2010 67 449 458 10.2146/ajhp090168 20208051 

  5. 5. Lin M.Y. Yen C.L. Antioxidative ability of lactic acid bacteria J. Agric. Food Chem. 1999 47 1460 1466 10.1021/jf981149l 10563999 

  6. 6. Shen Q. Shang N. Li P. In vitro and in vivo antioxidant activity of Bifidobacterium animalis 01 isolated from centenarians Curr. Microbiol. 2011 62 1097 1103 10.1007/s00284-010-9827-7 21132298 

  7. 7. Wang Y. Wu Y. Wang Y. Fu A. Gong L. Li W. Li Y. Bacillus amyloliquefaciens SC06 alleviates the oxidative stress of IPEC-1 via modulating Nrf2/Keap1 signaling pathway and decreasing ROS production Appl. Microbiol. Biotechnol. 2016 101 1 12 10.1007/s00253-016-8032-4 27847989 

  8. 8. Persichetti E. De Michele A. Codini M. Traina G. Antioxidative capacity of Lactobacillus fermentum LF31 evaluated in vitro by oxygen radical absorbance capacity assay Nutrition 2014 30 936 938 10.1016/j.nut.2013.12.009 24985014 

  9. 9. Halliwell B. Cross C.E. Oxygen-derived species: Their relation to human disease and environmental stress Environ. Health Perspect. 1994 102 5 10.1289/ehp.94102s105 7705305 

  10. 10. Cross C.E. Halliwell B. Borish E.T. Pryor W.A. Ames B.N. Saul R.L. McCord J.M. Harman D. Oxygen radicals and human disease Ann. Int. Med. 1987 107 526 545 10.7326/0003-4819-107-4-526 3307585 

  11. 11. Ames B.N. Shigenaga M.K. Hagen T.M. Oxidants, antioxidants, and the degenerative diseases of aging Proc. Natl. Acad. Sci. USA 1993 90 7915 7922 10.1073/pnas.90.17.7915 8367443 

  12. 12. Eftekharzadeh B. Maghsoudi N. Khodagholi F. Stabilization of transcription factor Nrf2 by tBHQ prevents oxidative stress-induced amyloid β formation in NT2N neurons Biochimie 2010 92 245 253 10.1016/j.biochi.2009.12.001 20026169 

  13. 13. Harrison D. Griendling K.K. Landmesser U. Hornig B. Drexler H. Role of oxidative stress in atherosclerosis Am. J. Cardiol. 2003 91 7 11 10.1016/S0002-9149(02)03144-2 

  14. 14. Ostrakhovitch E.A. Afanas’ev I.B. Oxidative stress in rheumatoid arthritis leukocytes: Suppression by rutin and other antioxidants and chelators Biochem. Pharmacol. 2001 62 743 746 10.1016/S0006-2952(01)00707-9 11551519 

  15. 15. Griendling K.K. FitzGerald G.A. Oxidative stress and cardiovascular injury part I: Basic mechanisms and in vivo monitoring of ROS Circulation 2003 108 1912 1916 10.1161/01.CIR.0000093660.86242.BB 14568884 

  16. 16. Ceriello A. Motz E. Is oxidative stress the pathogenic mechanism underlying insulin resistance, diabetes, and cardiovascular disease? The common soil hypothesis revisited Arterioscler. Thromb. Vasc. Biol. 2004 24 816 823 10.1161/01.ATV.0000122852.22604.78 14976002 

  17. 17. Morrell C.N. Reactive Oxygen Species Circ. Res. 2008 103 571 572 10.1161/CIRCRESAHA.108.184325 18796643 

  18. 18. Finkel T. Signal transduction by reactive oxygen species J. Cell Biol. 2011 194 7 15 10.1083/jcb.201102095 21746850 

  19. 19. Schreck R. Rieber P. Baeuerle P.A. Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappa B transcription factor and HIV-1 EMBO J. 1991 10 2247 2258 2065663 

  20. 20. Hensley K. Robinson K.A. Gabbita S.P. Salsman S. Floyd R.A. Reactive oxygen species, cell signaling, and cell injury Free Radic. Biol. Med. 2000 28 1456 1462 10.1016/S0891-5849(00)00252-5 10927169 

  21. 21. Waris G. Ahsan H. Reactive oxygen species: Role in the development of cancer and various chronic conditions J. Carcinog. 2006 5 14 10.1186/1477-3163-5-14 16689993 

  22. 22. Wang J. Tang H. Zhang C. Zhao Y. Derrien M. Rocher E. van-Hylckama Vlieg J.E. Strissel K. Zhao L. Obin M. Modulation of gut microbiota during probiotic-mediated attenuation of metabolic syndrome in high fat diet-fed mice ISME J. 2015 9 1 15 10.1038/ismej.2014.99 24936764 

  23. 23. Rad A.H. Sahhaf F. Hassanalilou T. Ejtahed H.S. Motayagheni N. Soroush A.R. Javadi M. Mortazavian A.M. Khalili L. Diabetes management by probiotics: Current knowledge and future perspectives Curr. Diabetes Rev. 2016 10.2174/1573399812666161014112515 

  24. 24. Gomes A.C. Bueno A.A. de Souza R.G. Mota J.F. Gut microbiota, probiotics and diabetes Nutr. J. 2014 13 60 10.1186/1475-2891-13-60 24939063 

  25. 25. Holzapfel W.H. Schillinger U. Introduction to pre-and probiotics Food Res. Int. 2002 35 109 116 10.1016/S0963-9969(01)00171-5 

  26. 26. Zocco M.A. dal Verme L.Z. Cremonini F. Piscaglia A.C. Nista E.C. Candelli M. Novi M. Rigante D. Cazzato I.A. Ojetti V. Efficacy of Lactobacillus GG in maintaining remission of ulcerative colitis Aliment. Pharmacol. Ther. 2006 23 1567 1574 10.1111/j.1365-2036.2006.02927.x 16696804 

  27. 27. Saez-Lara M.J. Gomez-Llorente C. Plaza-Diaz J. Gil A. The role of probiotic lactic acid bacteria and bifidobacteria in the prevention and treatment of inflammatory bowel disease and other related diseases: A systematic review of randomized human clinical trials BioMed Res. Int. 2015 2015 10.1155/2015/505878 25793197 

  28. 28. Liu Y.W. Su Y.W. Ong W.K. Cheng T.H. Tsai Y.C. Oral administration of Lactobacillus plantarum K68 ameliorates DSS-induced ulcerative colitis in BALB/c mice via the anti-inflammatory and immunomodulatory activities Int. Immunopharmacol. 2011 11 2159 2166 10.1016/j.intimp.2011.09.013 21996541 

  29. 29. Huang H.Y. Korivi M. Tsai C.H. Yang J.H. Tsai Y.C. Supplementation of lactobacillus plantarum K68 and fruit-vegetable ferment along with high fat-fructose diet attenuates metabolic syndrome in rats with insulin resistance Evid. Based Complement. Altern. Med. 2013 2013 10.1155/2013/943020 23690866 

  30. 30. Dawood M.A. Koshio S. Ishikawa M. Yokoyama S. El Basuini M.F. Hossain M.S. Nhu T.H. Dossou S. Moss A.S. Effects of dietary supplementation of Lactobacillus rhamnosus or/and Lactococcus lactis on the growth, gut microbiota and immune responses of red sea bream, Pagrus major Fish Shellfish Immunol. 2016 49 275 285 10.1016/j.fsi.2015.12.047 26766177 

  31. 31. Dawood M.A. Koshio S. Ishikawa M. El-Sabagh M. Esteban M.A. Zaineldin A.I. Probiotics as an environment-friendly approach to enhance red sea bream, Pagrus major growth, immune response and oxidative status Fish Shellfish Immunol. 2016 57 170 178 10.1016/j.fsi.2016.08.038 27542618 

  32. 32. Sivan A. Corrales L. Hubert N. Williams J.B. Aquino-Michaels K. Earley Z.M. Benyamin F.W. Lei Y.M. Jabri B. Alegre M.L. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti–PD-L1 efficacy Science 2015 350 1084 1089 10.1126/science.aac4255 26541606 

  33. 33. Whorwell P.J. Altringer L. Morel J. Bond Y. Charbonneau D. O’Mahony L. Kiely B. Shanahan F. Quigley E.M. Efficacy of an encapsulated probiotic Bifidobacterium infantis 35624 in women with irritable bowel syndrome Am. J. Gastroenterol. 2006 101 1581 1590 10.1111/j.1572-0241.2006.00734.x 16863564 

  34. 34. Lei K. Li Y.L. Yu D.Y. Rajput I.R. Li W.F. Influence of dietary inclusion of Bacillus licheniformis on laying performance, egg quality, antioxidant enzyme activities, and intestinal barrier function of laying hens Poult. Sci. 2013 92 2389 2395 10.3382/ps.2012-02686 23960122 

  35. 35. Yang H.L. Xia H.Q. Ye Y.D. Zou W.C. Sun Y.Z. Probiotic Bacillus pumilus SE5 shapes the intestinal microbiota and mucosal immunity in grouper Epinephelus coioides Dis. Aquat. Org. 2014 111 119 127 10.3354/dao02772 25266899 

  36. 36. Rajput I.R. Li L.Y. Xin X. Wu B.B. Juan Z.L. Cui Z.W. Yu D.Y. Li W.F. Effect of Saccharomyces boulardii and Bacillus subtilis B10 on intestinal ultrastructure modulation and mucosal immunity development mechanism in broiler chickens Poult. Sci. 2013 92 956 965 10.3382/ps.2012-02845 23472019 

  37. 37. Asemi Z. Zare Z. Shakeri H. Sabihi S.S. Esmaillzadeh A. Effect of multispecies probiotic supplements on metabolic profiles, hs-CRP, and oxidative stress in patients with type 2 diabetes Ann. Nutr. Metab. 2013 63 1 9 10.1159/000349922 23899653 

  38. 38. Stecchini M.L. Del Torre M. Munari M. Determination of peroxy radical-scavenging of lactic acid bacteria Int. J. Food Microbiol. 2001 64 183 188 10.1016/S0168-1605(00)00456-6 11252501 

  39. 39. Kullisaar T. Zilmer M. Mikelsaar M. Vihalemm T. Annuk H. Kairane C. Kilk A. Two antioxidative lactobacilli strains as promising probiotics Int. J. Food Microbial. 2002 72 215 224 10.1016/S0168-1605(01)00674-2 

  40. 40. Bao Y. Wang Z. Zhang Y. Zhang J. Wang L. Dong X. Su F. Yao G. Wang S. Zhang H. Effect of Lactobacillus plantarum P-8 on lipid metabolism in hyperlipidemic rat model Eur. J. Lipid Sci. Technol. 2012 114 1230 1236 10.1002/ejlt.201100393 

  41. 41. Martarelli D. Verdenelli M.C. Scuri S. Cocchioni M. Silvi S. Cecchini C. Pompei P. Effect of a probiotic intake on oxidant and antioxidant parameters in plasma of athletes during intense exercise training Curr. Microbiol. 2011 62 1689 1696 10.1007/s00284-011-9915-3 21400082 

  42. 42. Gutteridge J.M.C. Richmond R. Halliwell B. Inhibition of the iron-catalyzed formation of hydroxyl radicals from superoxide of lipid peroxidation by desferrioxamine Biochem. J. 1979 184 469 472 10.1042/bj1840469 230833 

  43. 43. Lee J. Hwang K.T. Chung M.Y. Cho D. Park C. Resistance of Lactobacillus casei KCTC 3260 to reactive oxygen species (ROS): Role for a metal ion chelating effect J. Food Sci. 2005 70 m388 m391 10.1111/j.1365-2621.2005.tb11524.x 

  44. 44. Ahire J.J. Mokashe N.U. Patil H.J. Chaudhari B.L. Antioxidative potential of folate producing probiotic Lactobacillus helveticus CD6 J. Food Sci. Technol. 2013 50 26 34 10.1007/s13197-011-0244-0 24425884 

  45. 45. Halliwell B. Murcia H.A. Chirico S. Aruoma O.I. Free radicals and antioxidants in food and in vivo: What they do and how they work Crit. Rev. Food Sci. Nutr. 1995 35 7 20 10.1080/10408399509527682 7748482 

  46. 46. Landis G.N. Tower J. Superoxide dismutase evolution and life span regulation Mech. Ageing Dev. 2005 126 365 379 10.1016/j.mad.2004.08.012 15664623 

  47. 47. Davies K.J.A. Oxidative stress, antioxidant defenses, and damage removal, repair, and replacement systems IUBMB Life 2000 50 279 289 10.1080/15216540051081010 11327322 

  48. 48. Koc M. Taysi S. Buyukokuroglu M.E. Bakan N. Melatonin protects rat liver against irradiation-induced oxidative injury J. Radiat. Res. 2003 44 211 215 10.1269/jrr.44.211 14646223 

  49. 49. Seguí J. Gironella M. Sans M. Granell S. Gil F. Gimeno M. Coronel P. Pique J. Panes J. Superoxide dismutase ameliorates TNBS-induced colitis by reducing oxidative stress, adhesion molecule expression, and leukocyte recruitment into the inflamed intestine J. Leukoc. Biol. 2004 76 537 544 10.1189/jlb.0304196 15197232 

  50. 50. Mollà M. Gironella M. Salas A. Closa D. Biete A. Gimeno M. Coronel P. Pique J.M. Panes J. Protective effect of superoxide dismutase in radiation-induced intestinal inflammation Int. J. Radiat. Oncol. Biol. Phys. 2005 61 1159 1166 10.1016/j.ijrobp.2004.11.010 15752897 

  51. 51. LeBlanc J.G. Del Carmen S. Miyoshi A. Azevedo V. Sesma F. Langella P. Bermudez-Humaran L. Watterlot L. Perdigon G. Use of superoxide dismutase and catalase producing lactic acid bacteria in TNBS induced Crohn’s disease in mice J. Biotechnol. 2011 151 287 293 10.1016/j.jbiotec.2010.11.008 21167883 

  52. 52. Ho Y.S. Xiong Y. Ma W. Spector A. Ho D. Mice lacking catalase develop normally but show differential sensitivity to oxidant tissue injury J. Biol. Chem. 2004 279 32804 32812 10.1074/jbc.M404800200 15178682 

  53. 53. Spyropoulos B.G. Misiakos E.P. Fotiadis C. Stoidis C. Antioxidant properties of probiotics and their protective effects in the pathogenesis of radiation-induced enteritis and colitis Dig. Dis. Sci. 2011 56 285 294 10.1007/s10620-010-1307-1 20632107 

  54. 54. De LeBlanc A.M. LeBlanc J.G. Perdigon G. Miyoshi A. Langella P. Azevedo V. Sesma F. Oral administration of a catalase-producing Lactococcus lactis can prevent a chemically induced colon cancer in mice J. Med. Microbiol. 2008 57 100 105 10.1099/jmm.0.47403-0 18065674 

  55. 55. Wang A.N. Yi X.W. Yu H.F. Dong B. Qiao S.Y. Free radical scavenging activity of Lactobacillus fermentum in vitro and its antioxidative effect on growing-finishing pigs J. Appl. Microbiol. 2009 107 1140 1148 10.1111/j.1365-2672.2009.04294.x 19486423 

  56. 56. Aluwong T. Kawu M. Raji M. Dzenda T. Govwang F. Sinkalu V. Ayo J. Effect of yeast probiotic on growth, antioxidant enzyme activities and malondialdehyde concentration of broiler chickens Antioxidants 2013 2 326 339 10.3390/antiox2040326 26784468 

  57. 57. Ejtahed H.S. Mohtadi-Nia J. Homayouni-Rad A. Niafar M. Asghari-Jafarabadi M. Mofid V. Probiotic yogurt improves antioxidant status in type 2 diabetic patients Nutrition 2012 28 539 543 10.1016/j.nut.2011.08.013 22129852 

  58. 58. Pompei A. Cordisco L. Amaretti A. Zanoni S. Matteuzzi D. Rossi M. Folate production by bifidobacteria as a potential probiotic property Appl. Environ. Microbiol. 2007 73 179 185 10.1128/AEM.01763-06 17071792 

  59. 59. Rossi M. Amaretti A. Raimondi S. Folate production by probiotic bacteria Nutrients 2011 3 118 134 10.3390/nu3010118 22254078 

  60. 60. Pompei A. Cordisco L. Amaretti A. Zanoni S. Raimondi S. Matteuzzi D. Rossi M. Administration of folate-producing bifidobacteria enhances folate status in Wistar rats J. Nutr. 2007 137 2742 2746 18029493 

  61. 61. Strozzi G.P. Mogna L. Quantification of folic acid in human feces after administration of Bifidobacterium probiotic strains J. Clin. Gastroenterol. 2008 42 S179 S184 10.1097/MCG.0b013e31818087d8 18685499 

  62. 62. Zilmer M. Soomets U. Rehema A. Langel U. The glutathione system as an attractive therapeutic target Drug Des. Rev. 2005 2 121 127 10.2174/1567269053202697 

  63. 63. Kullisaar T. Songisepp E. Aunapuu M. Kilk K. Arend A. Mikelsaar M. Rehema A. Zilmer M. Complete glutathione system in probiotic Lactobacillus fermentum ME-3 Prikl. Biokhimiia Mikrobiol. 2010 46 481 486 10.1134/S0003683810050030 

  64. 64. Kau A.L. Ahern P.P. Griffin N.W. Goodman A.L. Gordon J.I. Human nutrition, the gut microbiome and the immune system Nature 2011 474 327 336 10.1038/nature10213 21677749 

  65. 65. Endo H. Niioka M. Kobayashi N. Tanaka M. Watanabe T. Butyrate-producing probiotics reduce nonalcoholic fatty liver disease progression in rats: New insight into the probiotics for the gut-liver axis PLoS ONE 2013 8 e63388 10.1371/journal.pone.0063388 23696823 

  66. 66. Al-Maskari M.Y. Waly M.I. Ali A. Al-Shuaibi Y.S. Ouhtit A. Folate and vitamin B12 deficiency and hyperhomocysteinemia promote oxidative stress in adult type 2 diabetes Nutrition 2012 28 e23 e26 10.1016/j.nut.2012.01.005 22595450 

  67. 67. Mohammad M.A. Molloy A. Scott J. Hussein L. Plasma cobalamin and folate and their metabolic markers methylmalonic acid and total homocysteine among Egyptian children before and after nutritional supplementation with the probiotic bacteria Lactobacillus acidophilus in yoghurt matrix Int. J. Food Sci. Nutr. 2006 57 470 480 10.1080/09637480600968735 17162326 

  68. 68. Nandi D. Patra R.C. Swarup D. Effect of cysteine, methionine, ascorbic acid and thiamine on arsenic-induced oxidative stress and biochemical alterations in rats Toxicology 2005 211 26 35 10.1016/j.tox.2005.02.013 15863245 

  69. 69. Mehta R. Dedina L. O’Brien P.J. Rescuing hepatocytes from iron-catalyzed oxidative stress using vitamins B1 and B6 Toxicol. In Vitro 2011 25 1114 1122 10.1016/j.tiv.2011.03.015 21457772 

  70. 70. Fabian E. Majchrzak D. Dieminger B. Meyer E. Elmadfa I. Influence of probiotic and conventional yoghurt on the status of vitamins B1, B2 and B6 in young healthy women Ann. Nutr. Metab. 2008 52 29 36 10.1159/000114408 18230968 

  71. 71. Lutgendorff F. Trulsson L.M. van Minnen L.P. Rijkers G.T. Timmerman H.M. Franzen L.E. Gooszen H.G. Akkermans L.M. Soderholm J.D. Sandstrom P.A. Probiotics enhance pancreatic glutathione biosynthesis and reduce oxidative stress in experimental acute pancreatitis Am. J. Physiol. Gastrointest. Liver Physiol. 2008 295 G1111 G1121 10.1152/ajpgi.00603.2007 18832452 

  72. 72. Lutgendorff F. Nijmeijer R.M. Sandström P.A. Trulsson L.M. Magnusson K.E. Timmerman H.M. van Minnen L.P. Rijkers G.T. Gooszen H.G. Akkermans L.M. Probiotics prevent intestinal barrier dysfunction in acute pancreatitis in rats via induction of ileal mucosal glutathione biosynthesis PLoS ONE 2009 4 e4512 10.1371/journal.pone.0004512 19223985 

  73. 73. Kobayashi M. Li L. Iwamoto N. Nakajima-Takagi Y. Kaneko H. Nakayama Y. Eguchi M. Wada Y. Kumagai Y. Yamamoto M. The antioxidant defense system Keap1-Nrf2 comprises a multiple sensing mechanism for responding to a wide range of chemical compounds Mol. Cell. Biol. 2009 29 493 502 10.1128/MCB.01080-08 19001094 

  74. 74. Jones R.M. Desai C. Darby T.M. Luo L. Wolfarth A. Scharer C. Ardita C. Reedy A. Keebaugh E. Neish A. Lactobacilli modulate epithelial cytoprotection through the Nrf2 pathway Cell Rep. 2015 12 1217 1225 10.1016/j.celrep.2015.07.042 26279578 

  75. 75. Zhang D.D. Lo S.C. Cross J.V. Templeton D.J. Hannink M. Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex Mol. Cell. Biol. 2004 24 10941 10953 10.1128/MCB.24.24.10941-10953.2004 15572695 

  76. 76. Motohashi H. Yamamoto M. Nrf2–Keap1 defines a physiologically important stress response mechanism Trends Mol. Med. 2004 10 549 557 10.1016/j.molmed.2004.09.003 15519281 

  77. 77. Zhang D.D. Mechanistic studies of the Nrf2-Keap1 signaling pathway Drug Metab. Rev. 2006 38 769 789 10.1080/03602530600971974 17145701 

  78. 78. Klaassen C.D. Reisman S.A. Nrf2 the rescue: Effects of the antioxidative/electrophilic response on the liver Toxicol. Appl. Pharmacol. 2010 244 57 65 10.1016/j.taap.2010.01.013 20122946 

  79. 79. Maher J. Yamamoto M. The rise of antioxidant signaling—The evolution and hormetic actions of Nrf2 Toxicol. Appl. Pharm. 2010 244 4 15 10.1016/j.taap.2010.01.011 20122947 

  80. 80. Wang L.X. Liu K. Gao D.W. Hao J.K. Protective effects of two Lactobacillus plantarum strains in hyperlipidemic mice World J. Gastroenterol. 2013 19 3150 3156 10.3748/wjg.v19.i20.3150 23716997 

  81. 81. Gao D. Gao Z. Zhu G. Antioxidant effects of Lactobacillus plantarum via activation of transcription factor Nrf2 Food Funct. 2013 4 982 989 10.1039/c3fo30316k 23681127 

  82. 82. Srivastava S.K. Yadav U.C. Reddy A.B. Saxena A. Tammali R. Shoeb M. Ansari N.H. Bhatnagar A. Petrash M.J. Srivastava S. Aldose reductase inhibition suppresses oxidative stress-induced inflammatory disorders Chem. Biol. Interact. 2011 191 330 338 10.1016/j.cbi.2011.02.023 21354119 

  83. 83. Diao Y. Xin Y. Zhou Y. Li N. Pan X. Qi S. Qi Z. Xu Y. Luo L. Wan H. Extracellular polysaccharide from Bacillus sp. strain LBP32 prevents LPS-induced inflammation in RAW 264.7 macrophages by inhibiting NF-κB and MAPKs activation and ROS production Int. Immunopharmacol. 2014 18 12 19 10.1016/j.intimp.2013.10.021 24201081 

  84. 84. Petrof E.O. Kojima K. Ropeleski M.J. Musch M.W. Tao Y. De Simone C. Chang E.B. Probiotics inhibit nuclear factor-κB and induce heat shock proteins in colonic epithelial cells through proteasome inhibition Gastroenterology 2004 127 1474 1487 10.1053/j.gastro.2004.09.001 15521016 

  85. 85. Seth A. Yan F. Polk D.B. Rao R.K. Probiotics ameliorate the hydrogen peroxide-induced epithelial barrier disruption by a PKC-and MAP kinase-dependent mechanism Am. J. Physiol. Gastrointest. Liver Physiol. 2008 294 G1060 G1069 10.1152/ajpgi.00202.2007 18292183 

  86. 86. Widmann C. Gibson S. Jarpe M.B. Johnson G.L. Mitogen-activated protein kinase: Conservation of a three-kinase module from yeast to human Physiol. Rev. 1999 79 143 180 9922370 

  87. 87. Kyriakis J.M. Avruch J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation Physiol. Rev. 2001 81 807 869 11274345 

  88. 88. Tao Y. Drabik K.A. Waypa T.S. Musch M.W. Alverdy J.C. Schneewind O. Chang E.B. Petrof E.O. Soluble factors from Lactobacillus GG activate MAPKs and induce cytoprotective heat shock proteins in intestinal epithelial cells Am. J. Physiol. Cell Physiol. 2006 290 C1018 C1030 10.1152/ajpcell.00131.2005 16306130 

  89. 89. Blumberg P.M. Complexities of the protein kinase C pathway Mol. Carcinog. 1991 4 330 344 10.1002/mc.2940040502 

  90. 90. Stabel S. Parker P.J. Protein kinase C Pharmacol. Ther. 1991 51 71 95 10.1016/0163-7258(91)90042-K 1771178 

  91. 91. Gopalakrishna R. Chen Z.H. Gundimeda U. Modification of cysteine-rich regions in protein kinase C induced by oxidant tumor promoters and the enzyme specific inhibitors Methods Enzymol. 1995 252 134 148 

  92. 92. Lin C.C. Yang C.C. Wang C.Y. Tseng H.C. Pan C.S. Hsiao L.D. Yang C.M. NADPH oxidase/ROS-dependent VCAM-1 induction on TNF-α-challenged human cardiac fibroblasts enhances monocyte adhesion Front. Pharmacol. 2015 6 310 10.3389/fphar.2015.00310 26858641 

  93. 93. Rahman I. Biswas S.K. Kode A. Oxidant and antioxidant balance in the airways and airway diseases Eur. J. Pharmacol. 2006 533 222 239 10.1016/j.ejphar.2005.12.087 16500642 

  94. 94. Lin C.C. Hsieh H.L. Shih R.H. Chi P.L. Cheng S.E. Chen J.C. Yang C.M. NADPH oxidase 2-derived reactive oxygen species signal contributes to bradykinin-induced matrix metalloproteinase-9 expression and cell migration in brain astrocytes Cell Commun. Signal. 2012 10 35 10.1186/1478-811X-10-35 23176293 

  95. 95. Lee I.T. Yang C.M. Inflammatory signalings involved in airway and pulmonary diseases Mediat. Inflamm. 2013 2013 10.1155/2013/791231 23690670 

  96. 96. Aguirre J. Lambeth J.D. Nox enzymes from fungus to fly to fish and what they tell us about Nox function in mammals Free Radic. Biol. Med. 2010 49 1342 1353 10.1016/j.freeradbiomed.2010.07.027 20696238 

  97. 97. Holmström K.M. Finkel T. Cellular mechanisms and physiological consequences of redox-dependent signalling Nat. Rev. Mol. Cell Biol. 2014 15 411 421 10.1038/nrm3801 24854789 

  98. 98. Bedard K. Krause K.H. The NOX family of ROS-generating NADPH oxidases: Physiology and pathophysiology Physiol. Rev. 2007 87 245 313 10.1152/physrev.00044.2005 17237347 

  99. 99. Gómez-Guzmán M. Toral M. Romero M. Jimenez R. Galindo P. Sanchez M. Zarzuelo M.J. Olivares M. Galvez J. Duarte J. Antihypertensive effects of probiotics Lactobacillus strains in spontaneously hypertensive rats Mol. Nutr. Food Res. 2015 59 2326 2336 10.1002/mnfr.201500290 26255877 

  100. 100. Hussain T. Gupta S. Mukhtar H. Cyclooxygenase-2 and prostate carcinogenesis Cancer Lett. 2003 191 125 135 10.1016/S0304-3835(02)00524-4 12618325 

  101. 101. Schonbeck U. Sukhova G.K. Graber P. Coulter S. Libby P. Augmented expression of cyclooxygenase-2 in human atherosclerotic lesions Am. J. Pathol. 1999 155 1281 1291 10.1016/S0002-9440(10)65230-3 10514410 

  102. 102. Belton O. Byrne D. Kearney D. Leahy A. Fitzgerald D.J. Cyclooxygenase-1 and -2-dependent prostacyclin formation in patients with atherosclerosis Circulation 2000 102 840 845 10.1161/01.CIR.102.8.840 10952950 

  103. 103. Brzozowski T. Konturek P.C. Mierzwa M. Drozdowicz D. Bielanski W. Kwiecien S. Konturek S.J. Stachura J. Pawlik W.W. Hahn E.G. Effect of Probiotics and Triple Eradication Therapy on the Cyclooxygenase (COX)-2 Expression, Apoptosis, and Functional Gastric Mucosal Impairment in Helicobacter pylori-Infected Mongolian Gerbils Helicobacter 2006 11 10 20 10.1111/j.0083-8703.2006.00373.x 16423085 

  104. 104. Patel B. Kumar P. Banerjee R. Basu M. Pal A. Samanta M. Das S. Lactobacillus acidophilus attenuates Aeromonas hydrophila induced cytotoxicity in catla thymus macrophages by modulating oxidative stress and inflammation Mol. Immunol. 2016 75 69 83 10.1016/j.molimm.2016.05.012 27262084 

  105. 105. Bondy S.C. Naderi S. Contribution of hepatic cytochrome P450 systems to the generation of reactive oxygen species Biochem. Pharmacol. 1994 48 155 159 10.1016/0006-2952(94)90235-6 8043018 

  106. 106. Zangar R.C. Davydov D.R. Verma S. Mechanisms that regulate production of reactive oxygen species by cytochrome P450 Toxicol. Appl. Pharmacol. 2004 199 316 331 10.1016/j.taap.2004.01.018 15364547 

  107. 107. Matuskova Z. Siller M. Tunkova A. Anzenbacherova E. Zacharova A. Tlaskalova-Hogenova H. Zidek Z. Anzenbacher P. Effects of Lactobacillus casei on the expression and the activity of cytochromes P450 and on the CYP mRNA level in the intestine and the liver of male rats Neuro Endocrinol. Lett. 2010 32 8 14 

  108. 108. Sharan S. Intervention of Feeding Probiotic Dahi in Phase I and Phase II Pathway Activities of Xenobiotic Metabolism Ph.D. Thesis National Disease Research Interchange (NDRI) Karnal, India 2009 

  109. 109. Costello E.K. Stagaman K. Dethlefsen L. Bohannan B.J.M. Relman D.A. The application of ecological theory toward an understanding of the human microbiome Science 2012 336 1255 1262 10.1126/science.1224203 22674335 

  110. 110. Mackie R.I. Sghir A. Gaskins H.R. Developmental microbial ecology of the neonatal gastrointestinal tract Am. J. Clin. Nutr. 1999 69 1035S 1045S 10232646 

  111. 111. Fanaro S. Chierici R. Guerrini P. Vigi V. Intestinal microflora in early infancy: Composition and development Acta Paediatr. 2003 441 48 55 10.1111/j.1651-2227.2003.tb00646.x 

  112. 112. Berg R.D. The indigenous gastrointestinal microflora Trends Microbiol. 1996 4 430 435 10.1016/0966-842X(96)10057-3 8950812 

  113. 113. Penders J. Stobberingh E.E. van den Brandt P.A. Thijs C. The role of the intestinal microbiota in the development of atopic disorders Allergy 2007 62 1223 1236 10.1111/j.1398-9995.2007.01462.x 17711557 

  114. 114. Rajilic-Stojanovic M. Smidt H. de Vos W.M. Diversity of the human gastrointestinal tract microbiota revisited Environ. Microbiol. 2007 9 2125 2136 10.1111/j.1462-2920.2007.01369.x 17686012 

  115. 115. Hsiao W.W. Metz C. Singh D.P. Roth J. The microbes of the intestine: An introduction to their metabolic and signaling capabilities Endocrinol. Metab. Clin. N. Am. 2008 37 857 871 10.1016/j.ecl.2008.08.006 19026936 

  116. 116. Frank D.N. St Amand A.L. Feldman R.A. Boedeker E.C. Harpaz N. Pace N.R. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases Proc. Natl. Acad. Sci. USA 2007 104 13780 13785 10.1073/pnas.0706625104 17699621 

  117. 117. Sekirov I. Russell S.L. Antunes L.C. Finlay B.B. Gut microbiota in health and disease Physiol. Rev. 2010 90 859 904 10.1152/physrev.00045.2009 20664075 

  118. 118. Jones R.M. Neish A.S. Redox signaling mediated by the gut microbiota Free Radic. Biol. Med. 2016 10.1016/j.freeradbiomed.2016.10.495 27989756 

  119. 119. O’Toole P.W. Cooney J.C. Probiotic bacteria influence the composition and function of the intestinal microbiota Interdiscip. Perspect. Infect. Dis. 2008 2008 175285 10.1155/2008/175285 19277099 

  120. 120. Butel M.J. Probiotics, gut microbiota and health Méd. Mal. Infect. 2014 44 1 8 10.1016/j.medmal.2013.10.002 24290962 

  121. 121. Bhardwaj A. Kaur G. Gupta H. Vij S. Malik R.K. Interspecies diversity, safety and probiotic potential of bacteriocinogenic Enterococcus faecium isolated from dairy food and human faeces World J. Microbiol. Biotechnol. 2011 27 591 602 10.1007/s11274-010-0494-4 

  122. 122. Bhardwaj A. Malik R.K. Chauhan P. Functional and safety aspects of enterococci in dairy foods Indian J. Microbiol. 2008 48 317 325 10.1007/s12088-008-0041-2 23100728 

  123. 123. Doron S. Gorbach S.L. Probiotics: Their role in the treatment and prevention of disease Expert Rev. Anti-Infect. Ther. 2006 4 261 275 10.1586/14787210.4.2.261 16597207 

  124. 124. Alvarez-Olmos M.I. Oberhelman R.A. Probiotic agents and infectious diseases: A modern perspective on a traditional therapy Clin. Infect. Dis. 2001 32 1567 1576 10.1086/320518 11340528 

  125. 125. Silva M. Jacobus N.V. Deneke C. Gorbach S.L. Antimicrobial substance from a human Lactobacillus strain Antimicrob. Agents Chemother. 1987 31 1231 1233 10.1128/AAC.31.8.1231 3307619 

  126. 126. Vanderhoof J.A. Young R.J. Current and potential uses of probiotics Ann. Allergy Asthma Immunol. 2004 93 S33 S37 10.1016/S1081-1206(10)61730-9 15562872 

  127. 127. Cani P.D. Delzenne N.M. Interplay between obesity and associated metabolic disorders: New insights into the gut microbiota Curr. Opin. Pharmacol. 2009 9 737 743 10.1016/j.coph.2009.06.016 19628432 

  128. 128. Qiao Y. Sun J. Ding Y. Le G. Shi Y. Alterations of the gut microbiota in high-fat diet mice is strongly linked to oxidative stress Appl. Microbiol. Biotechnol. 2013 97 1689 1697 10.1007/s00253-012-4323-6 22948953 

  129. 129. Xin J. Zeng D. Wang H. Ni X. Yi D. Pan K. Jing B. Preventing non-alcoholic fatty liver disease through Lactobacillus johnsonii BS15 by attenuating inflammation and mitochondrial injury and improving gut environment in obese mice Appl. Microbiol. Biotechnol. 2014 98 6817 6829 10.1007/s00253-014-5752-1 24811405 

  130. 130. Park D.Y. Ahn Y.T. Park S.H. Huh C.S. Yoo S.R. Yu R. Sung M.K. McGregor R.A. Choi M.S. Supplementation of Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032 in diet-induced obese mice is associated with gut microbial changes and reduction in obesity PLoS ONE 2013 8 e59470 10.1371/journal.pone.0059470 23555678 

  131. 131. Everard A. Matamoros S. Geurts L. Delzenne N.M. Cani P.D. Saccharomyces boulardii administration changes gut microbiota and reduces hepatic steatosis, low-grade inflammation, and fat mass in obese and type 2 diabetic db/db mice mBio 2014 5 e01011 e01014 10.1128/mBio.01011-14 24917595 

  132. 132. Xue L. He J. Gao N. Lu X. Li M. Wu X. Liu Z. Jin Y. Liu J. Xu J. Geng Y. Probiotics may delay the progression of nonalcoholic fatty liver disease by restoring the gut microbiota structure and improving intestinal endotoxemia Sci. Rep. 2017 7 45176 10.1038/srep45176 28349964 

  133. 133. Klaenhammer T.R. Kleerebezem M. Kopp M.V. Rescigno M. The impact of probiotics and prebiotics on the immune system Nat. Rev. Immunol. 2012 12 728 734 10.1038/nri3312 23007572 

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로