$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Protective Effects of Peucedanum japonicum Extract against Osteoarthritis in an Animal Model Using a Combined Systems Approach for Compound-Target Prediction 원문보기

Nutrients, v.10 no.6, 2018년, pp.754 -   

Chun, Jin Mi (Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Korea) ,  Lee, A Yeong (lay7709@kiom.re.kr (A.Y.L.)) ,  Kim, Joong Sun (centraline@kiom.re.kr (J.S.K.)) ,  Choi, Goya (serparas@kiom.re.kr (G.C.)) ,  Kim, Seung-Hyung (Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Korea)

Abstract AI-Helper 아이콘AI-Helper

Peucedanum japonicum Thunberg is an herbal medicine used to treat neuralgia, rheumatoid arthritis, and inflammatory-related diseases. However, its effects on osteoarthritis (OA) and its regulatory mechanisms have not been investigated by network analysis. Here, we investigated the pharmacological ef...

주제어

참고문헌 (55)

  1. 1. Li G. Yin J. Gao J. Cheng T.S. Pavlos N.J. Zhang C. Zheng M.H. Subchondral bone in osteoarthritis: Insight into risk factors and microstructural changes Arthritis Res. Ther. 2013 15 223 10.1186/ar4405 24321104 

  2. 2. Meng Z. Huang R. Topical treatment of degenerative knee osteoarthritis Am. J. Med. Sci. 2018 355 6 12 10.1016/j.amjms.2017.06.006 29289264 

  3. 3. World Health Organization Regional Office for the Western Pacific Medicinal Plants in the Republic of Korea Western Pacific Series No. 21 WHO Regional Office for the Western Pacific Manila, Philippines 1998 Volume 316 1976 1977 9290611200 

  4. 4. Kim S.H. Jong H.S. Yoon M.H. Oh S.H. Jung K.T. Antinociceptive effect of intrathecal sec-O-glucosylhamaudol on the formalin-induced pain in rats Korean J. Pain 2017 30 98 103 10.3344/kjp.2017.30.2.98 28416993 

  5. 5. Nugara R.N. Inafuku M. Takara K. Iwasaki H. Oku H. Pteryxin: A coumarin in Peucedanum japonicum thunb leaves exerts antiobesity activity through modulation of adipogenic gene network Nutrition 2014 30 1177 1184 10.1016/j.nut.2014.01.015 24993752 

  6. 6. Taira N. Nugara R.N. Inafuku M. Takara K. Ogi T. Ichiba T. Iwasaki H. Okabe T. Oku H. In vivo and in vitro anti-obesity activities of dihydropyranocoumarins derivatives from Peucedanum japonicum thunb J. Funct. Foods 2017 29 19 28 10.1016/j.jff.2016.11.030 

  7. 7. Kim J.M. Erkhembaatar M. Lee G.S. Lee J.H. Noh E.M. Lee M. Song H.K. Lee C.H. Kwon K.B. Kim M.S. Peucedanum japonicum thunb. Ethanol extract suppresses RANKL-mediated osteoclastogenesis Exp. Ther. Med. 2017 14 410 416 10.3892/etm.2017.4480 28672947 

  8. 8. Chun J.M. Lee A.R. Kim H.S. Lee A.Y. Gu G.J. Moon B.C. Kwon B.I. Peucedanum japonicum extract attenuates allergic airway inflammation by inhibiting Th2 cell activation and production of pro-inflammatory mediators J. Ethnopharmacol. 2018 211 78 88 10.1016/j.jep.2017.09.006 28919220 

  9. 9. Hong M.J. Kim J. Determination of the absolute configuration of khellactone esters from Peucedanum japonicum roots J. Nat. Prod. 2017 80 1354 1360 10.1021/acs.jnatprod.6b00947 28402633 

  10. 10. Chen I.S. Chang C.T. Sheen W.S. Teng C.M. Tsai I.L. Duh C.Y. Ko F.N. Coumarins and antiplatelet aggregation constituents from formosan Peucedanum japonicum Phytochemistry 1996 41 525 530 10.1016/0031-9422(95)00625-7 8821432 

  11. 11. Huong D.T. Choi H.C. Rho T.C. Lee H.S. Lee M.K. Kim Y.H. Inhibitory activity of monoamine oxidase by coumarins from Peucedanum japonicum Arch. Pharm. Res. 1999 22 324 326 10.1007/BF02976373 10403141 

  12. 12. Hisamoto M. Kikuzaki H. Ohigashi H. Nakatani N. Antioxidant compounds from the leaves of Peucedanum japonicum thunb J. Agric. Food Chem. 2003 51 5255 5261 10.1021/jf0262458 12926867 

  13. 13. Hisamoto M. Kikuzaki H. Nakatani N. Constituents of the leaves of Peucedanum japonicum thunb. and their biological activity J. Agric. Food Chem. 2004 52 445 450 10.1021/jf0349127 14759130 

  14. 14. Lee S.O. Choi S.Z. Lee J.H. Chung S.H. Park S.H. Kang H.C. Yang E.Y. Cho H.J. Lee K.R. Antidiabetic coumarin and cyclitol compounds from Peucedanum japonicum Arch. Pharm. Res. 2004 27 1207 1210 10.1007/BF02975882 15646792 

  15. 15. Zhang G.B. Li Q.Y. Chen Q.L. Su S.B. Network pharmacology: A new approach for Chinese herbal medicine research Evid.-Based Complement. Altern. Med. 2013 2013 621423 10.1155/2013/621423 23762149 

  16. 16. Tang H. He S. Zhang X. Luo S. Zhang B. Duan X. Zhang Z. Wang W. Wang Y. Sun Y. A network pharmacology approach to uncover the pharmacological mechanism of Xuanhusuo powder on osteoarthritis Evid.-Based Complement. Altern. Med. 2016 2016 3246946 10.1155/2016/3246946 27110264 

  17. 17. Hong M. Li S. Wang N. Tan H.Y. Cheung F. Feng Y. A biomedical investigation of the hepatoprotective effect of Radix salviae miltiorrhizae and network pharmacology-based prediction of the active compounds and molecular targets Int. J. Mol. Sci. 2017 18 620 10.3390/ijms18030620 28335383 

  18. 18. Zhao R.L. He Y.M. Network pharmacology analysis of the anti-cancer pharmacological mechanisms of Ganoderma lucidum extract with experimental support using Hepa1-6-bearing C57 BL/6 mice J. Ethnopharmacol. 2018 210 287 295 10.1016/j.jep.2017.08.041 28882624 

  19. 19. Chun J.M. Kim H.S. Lee A.Y. Kim S.H. Kim H.K. Anti-inflammatory and antiosteoarthritis effects of Saposhnikovia divaricata ethanol extract: In vitro and in vivo studies Evid.-Based Complement. Altern. Med. 2016 2016 1984238 10.1155/2016/1984238 27042186 

  20. 20. McDougall J.J. Watkins L. Li Z. Vasoactive intestinal peptide (VIP) is a modulator of joint pain in a rat model of osteoarthritis Pain 2006 123 98 105 10.1016/j.pain.2006.02.015 16564620 

  21. 21. PubMed Available online: https://www.ncbi.nlm.nih.gov/pubmed/ (accessed on 16 April 2018) 

  22. 22. Korean Traditional Knowledge Portal Available online: http://www.koreantk.com/ktkp2014/ (accessed on 16 April 2018) 

  23. 23. ChEMBL Available online: https://www.ebi.ac.uk/chembl/ (accessed on 16 April 2018) 

  24. 24. PubChem Available online: https://pubchem.ncbi.nlm.nih.gov/ (accessed on 16 April 2018) 

  25. 25. Traditional Chinese Medicine Systems Pharmacology Database and Analysis Available online: http://lsp.nwu.edu.cn/tcmsp.php (accessed on 16 April 2018) 

  26. 26. Wang N. Zheng Y. Gu J. Cai Y. Wang S. Zhang F. Chen J. Situ H. Lin Y. Wang Z. Network-pharmacology-based validation of TAMS/CXCL-1 as key mediator of XIAOPI formula preventing breast cancer development and metastasis Sci. Rep. 2017 7 14513 10.1038/s41598-017-15030-3 29109519 

  27. 27. Chen C.C. Agrawal D.C. Lee M.R. Lee R.J. Kuo C.L. Wu C.R. Tsay H.S. Chang H.C. Influence of LED light spectra on in vitro somatic embryogenesis and LC-MS analysis of chlorogenic acid and rutin in Peucedanum japonicum thunb.: A medicinal herb Bot. Stud. 2016 57 9 10.1186/s40529-016-0124-z 28597418 

  28. 28. Search Tool for Interactions of Chemicals and Proteins (STITCH) Available online: http://stitch.embl.de/ (accessed on 20 April 2018) 

  29. 29. von Mering C. Jensen L.J. Snel B. Hooper S.D. Krupp M. Foglierini M. Jouffre N. Huynen M.A. Bork P. String: Known and predicted protein-protein associations, integrated and transferred across organisms Nucleic Acids Res. 2005 33 D433 D437 10.1093/nar/gki005 15608232 

  30. 30. Dong S. Xia T. Wang L. Zhao Q. Tian J. Investigation of candidate genes for osteoarthritis based on gene expression profiles Acta Orthop. Traumatol. Turc. 2016 50 686 690 10.1016/j.aott.2016.04.002 27866912 

  31. 31. Summer G. Kelder T. Radonjic M. van Bilsen M. Wopereis S. Heymans S. The network library: A framework to rapidly integrate network biology resources Bioinformatics 2016 32 i473 i478 10.1093/bioinformatics/btw436 27587664 

  32. 32. Therapeutic Targets Database (TTD) Available online: http://bidd.nus.edu.sg/BIDD-Databases/TTD/TTD.asp (accessed on 20 April 2018) 

  33. 33. Cytoscape Available online: http://www.cytoscape.org/ (accessed on 24 April 2018) 

  34. 34. Smoot M.E. Ono K. Ruscheinski J. Wang P.L. Ideker T. Cytoscape 2.8: New features for data integration and network visualization Bioinformatics 2011 27 431 432 10.1093/bioinformatics/btq675 21149340 

  35. 35. Database for Annotation, Visualization, and Integrated Discovery (DAVID) Available online: https://david.ncifcrf.gov/ (accessed on 24 April 2018) 

  36. 36. Kyoto Encyclopedia of Genes and Genomes (KEGG) Available online: http://www.genome.jp/kegg/ (accessed on 24 April 2018) 

  37. 37. Bove S.E. Calcaterra S.L. Brooker R.M. Huber C.M. Guzman R.E. Juneau P.L. Schrier D.J. Kilgore K.S. Weight bearing as a measure of disease progression and efficacy of anti-inflammatory compounds in a model of monosodium iodoacetate-induced osteoarthritis Osteoarthr. Cartil. 2003 11 821 830 10.1016/S1063-4584(03)00163-8 14609535 

  38. 38. Paquet J. Goebel J.C. Delaunay C. Pinzano A. Grossin L. Cournil-Henrionnet C. Gillet P. Netter P. Jouzeau J.Y. Moulin D. Cytokines profiling by multiplex analysis in experimental arthritis: Which pathophysiological relevance for articular versus systemic mediators? Arth. Res. Ther. 2012 14 R60 10.1186/ar3774 22414623 

  39. 39. Robinson W.H. Lepus C.M. Wang Q. Raghu H. Mao R. Lindstrom T.M. Sokolove J. Low-grade inflammation as a key mediator of the pathogenesis of osteoarthritis Nat. Rev. Rheumatol. 2016 12 580 592 10.1038/nrrheum.2016.136 27539668 

  40. 40. Wojdasiewicz P. Poniatowski L.A. Szukiewicz D. The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis Med. Inflamm. 2014 2014 561459 10.1155/2014/561459 24876674 

  41. 41. Daghestani H.N. Kraus V.B. Inflammatory biomarkers in osteoarthritis Osteoarthr. Cartil. 2015 23 1890 1896 10.1016/j.joca.2015.02.009 26521734 

  42. 42. Geng Y. Blanco F.J. Cornelisson M. Lotz M. Regulation of cyclooxygenase-2 expression in normal human articular chondrocytes J. Immunol. 1995 155 796 801 7608556 

  43. 43. Martel-Pelletier J. Lajeunesse D. Reboul P. Pelletier J.P. Therapeutic role of dual inhibitors of 5-LOX and COX, selective and non-selective non-steroidal anti-inflammatory drugs Ann. Rheum. Dis. 2003 62 501 509 10.1136/ard.62.6.501 12759283 

  44. 44. Sokolove J. Lepus C.M. Role of inflammation in the pathogenesis of osteoarthritis: Latest findings and interpretations Ther. Adv. Musculoskelet. Dis. 2013 5 77 94 10.1177/1759720X12467868 23641259 

  45. 45. Na J.Y. Song K. Kim S. Kwon J. Rutin protects rat articular chondrocytes against oxidative stress induced by hydrogen peroxide through SIRT1 activation Biochem. Biophys. Res. Commun. 2016 473 1301 1308 10.1016/j.bbrc.2016.04.064 27086847 

  46. 46. Chen W.P. Tang J.L. Bao J.P. Hu P.F. Shi Z.L. Wu L.D. Anti-arthritic effects of chlorogenic acid in interleukin-1beta-induced rabbit chondrocytes and a rabbit osteoarthritis model Int. Immunopharmacol. 2011 11 23 28 10.1016/j.intimp.2010.09.021 20951230 

  47. 47. Cao Z. Bai Y. Liu C. Dou C. Li J. Xiang J. Zhao C. Xie Z. Xiang Q. Dong S. Hypertrophic differentiation of mesenchymal stem cells is suppressed by xanthotoxin via the p38MAPK/HDAC4 pathway Mol. Med. Rep. 2017 16 2740 2746 10.3892/mmr.2017.6886 28677757 

  48. 48. Pelletier J.P. Martel-Pelletier J. Abramson S.B. Osteoarthritis, an inflammatory disease: Potential implication for the selection of new therapeutic targets Arthritis Rheumatol. 2001 44 1237 1247 10.1002/1529-0131(200106)44:6 3.0.CO;2-F 

  49. 49. Hwang H.S. Kim H.A. Chondrocyte apoptosis in the pathogenesis of osteoarthritis Int. J. Mol. Sci. 2015 16 26035 26054 10.3390/ijms161125943 26528972 

  50. 50. Dean L. Tramadol therapy and cyp2d6 genotype Medical Genetics Summaries Pratt V. McLeod H. Dean L. Malheiro A. Rubinstein W. National Center for Biotechnology Information (US) Bethesda, MD, USA 2012 

  51. 51. Maksymowych W.P. Russell A.S. Chiu P. Yan A. Jones N. Clare T. Lambert R.G. Targeting tumour necrosis factor alleviates signs and symptoms of inflammatory osteoarthritis of the knee Arth. Res. Ther. 2012 14 R206 10.1186/ar4044 23036475 

  52. 52. Fernandez-Torres J. Martinez-Nava G.A. Gutierrez-Ruiz M.C. Gomez-Quiroz L.E. Gutierrez M. Role of HIF-1alpha signaling pathway in osteoarthritis: A systematic review Rev. Bras. Reumatol. 2017 57 162 173 

  53. 53. Fu D. Shang X. Ni Z. Shi G. Shikonin inhibits inflammation and chondrocyte apoptosis by regulation of the PI3K/Akt signaling pathway in a rat model of osteoarthritis Exp. Ther. Med. 2016 12 2735 2740 10.3892/etm.2016.3642 27703516 

  54. 54. Loeser R.F. Erickson E.A. Long D.L. Mitogen-activated protein kinases as therapeutic targets in osteoarthritis Curr. Opin. Rheumatol. 2008 20 581 586 10.1097/BOR.0b013e3283090463 18698181 

  55. 55. Murata M. Yudoh K. Masuko K. The potential role of vascular endothelial growth factor (VEGF) in cartilage: How the angiogenic factor could be involved in the pathogenesis of osteoarthritis? Osteoarthr. Cartil. 2008 16 279 286 10.1016/j.joca.2007.09.003 17945514 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로