$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

스마트 구조물 균열 감지를 위한 1차원 합성곱신경망(1D CNN) 딥러닝을 이용한 파괴 신호 특정 기법
Determination of Crack Signals Using the Deep Learning Technique Based on a 1D Convolutional Neural Network for Smart Detection of Structural Damage Cracking 원문보기

한국방재학회논문집 = Journal of the Korean Society of Hazard Mitigation, v.19 no.4, 2019년, pp.1 - 7  

한결 ,  오태민 ,  김현우 ,  송기일 ,  김영철 ,  권태혁

초록
AI-Helper 아이콘AI-Helper

초고층 빌딩, 대형 구조물 등의 건설이 일반화됨에 따라 점차 노후화 및 지진, 태풍 등의 자연재해에 의한 구조물의 손상 모니터링에 대한 필요도가 증가하고 있다. 특히, 하부구조인 구조물 기초에서의 손상은 구조물 전체의 건전도에 부정적인 영향을 미칠 수 있기 때문에, 이에 대한 감지는 매우 중요하다. 구조물 건전도 비파괴검사 방법으로는 대표적으로 음향, 진동 감지기법 등이 제안되었으며, 이에 음향, 진동 감지기에 의해 수집된 신호를 해석하여 균열의 발생 위치 및 균열의 크기, 내구도 등을 역으로 추정하는 방법에 관한 연구가 실험실 스케일에서 많이 수행되어왔다. 하지만 실제로 현장에서는 적용되는 경우가 극히 드문 데 그 이유는 평소 발생하는 노이즈 신호(정상 신호)와 손상파괴 신호(비정상 신호)를 구분하는 것이 어렵기 때문이다. 특히 노이즈 신호와 구조물 파괴 신호가 동시에 수집될 때 이를 구분하는 것은 더욱 어려워진다. 이에 본 연구에서는 노이즈 신호(정상 신호)와 손상파괴 신호(비정상 신호)를 수집하고, 무작위로 합성된 신호를 딥러닝 기법인 1D convolutional neural network model을 통해서 정상 신호와 비정상 신호를 구분하는 알고리즘을 개발하였다. 개발된 알고리즘을 사용하면 현장에서 실시간으로 수집된 신호를 구분할 수 있게 됨으로써 구조물 안전성 변화 예측을 통해 재산 및 인명 피해 위험성을 최소화할 수 있을 것으로 생각한다.

Abstract AI-Helper 아이콘AI-Helper

Structures can be damaged by natural disasters such as earthquakes and typhoons. In particular, any damage to the foundation of a structure can present critical problems. Therefore, a smart monitoring technique such as the acoustic emission method is required to detect internal cracks and other typ...

주제어

참고문헌 (9)

  1. Abdeljaber, O., Avci, O., Kiranyaz, S., Gabbouj, M., Inman, D.J.. Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks. Journal of sound and vibration, vol.388, 154-170.

  2. Brownjohn, J.M.W. Structural health monitoring of civil infrastructure. Philosophical transactions. Series A, Mathematical, physical, and engineering sciences, vol.365, no.1851, 589-622.

  3. ElBatanouny, Mohamed K., Ziehl, Paul H., Larosche, Aaron, Mangual, Jesé, Matta, Fabio, Nanni, Antonio. Acoustic emission monitoring for assessment of prestressed concrete beams. Construction & building materials, vol.58, 46-53.

  4. 10.1007/978-3-7091-0399-9_1 

  5. Wireless acoustic emission sensor networks for structural health monitoring in civil engineering Grosse 2006 

  6. Ohno, K., Ohtsu, M.. Crack classification in concrete based on acoustic emission. Construction & building materials, vol.24, no.12, 2339-2346.

  7. Ongpeng, Jason, Oreta, Andres, Hirose, Sohichi. Monitoring Damage Using Acoustic Emission Source Location and Computational Geometry in Reinforced Concrete Beams. Applied sciences, vol.8, no.2, 189-.

  8. Pandya, D.H., Upadhyay, S.H., Harsha, S.P.. Fault diagnosis of rolling element bearing with intrinsic mode function of acoustic emission data using APF-KNN. Expert systems with applications, vol.40, no.10, 4137-4145.

  9. Sohn 2003 

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로