$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Liquid-exfoliated graphene as highly efficient conductive additives for cathodes in lithium ion batteries

Carbon, v.153, 2019년, pp.156 - 163  

Wang, Jingshi (Beijing Key Laboratory for Powder Technology Research & Development, Beihang University) ,  Shen, Zhigang (Beijing Key Laboratory for Powder Technology Research & Development, Beihang University) ,  Yi, Min (Institute of Materials Science, Technische Universitä)

Abstract AI-Helper 아이콘AI-Helper

Abstract We demonstrate in this work that the liquid-exfoliated graphene produced by jet cavitation as conductive additives can greatly improve the electrochemical performance of commercial cathode materials in lithium ion batteries (LIBs). It is found that a graphene loading of ∼3 wt% can incr...

주제어

참고문헌 (59)

  1. Nature Kang 458 7235 190 2009 10.1038/nature07853 Battery materials for ultrafast charging and discharging 

  2. Nature Li 414 7235 359 2001 Issues and challenges facing rechargeable lithium batteries 

  3. Mater. Today Nitta 18 5 252 2015 10.1016/j.mattod.2014.10.040 Li-ion battery materials: present and future 

  4. J. Power Sources Myung 283 219 2015 10.1016/j.jpowsour.2015.02.119 Nanostructured cathode materials for rechargeable lithium batteries 

  5. J. Power Sources Wang 233 209 2013 10.1016/j.jpowsour.2013.01.102 Hybrid super aligned carbon nanotube/carbon black conductive networks: a strategy to improve both electrical conductivity and capacity for lithium ion batteries 

  6. J. Solid State Electrochem. Jin 12 12 1549 2008 10.1007/s10008-008-0509-3 Effect of different carbon conductive additives on electrochemical properties of LiFePO4-C/Li batteries 

  7. J. Power Sources Liu 97 361 2001 10.1016/S0378-7753(01)00549-3 Effects of conducting carbon on the electrochemical performance of LiCoO2 and LiMn2O4 cathodes 

  8. Carbon Li 44 7 1334 2006 10.1016/j.carbon.2005.12.017 Multiwalled carbon nanotubes as a conducting additive in a LiNi0:7Co0:3O2 cathode for rechargeable lithium batteries 

  9. Compos. Sci. Technol. Liu 72 2 121 2012 10.1016/j.compscitech.2011.11.019 Carbon nanotube (CNT)-based composites as electrode material for rechargeable Li-ion batteries: a review 

  10. J. Power Sources Liu 184 2 522 2008 10.1016/j.jpowsour.2008.03.017 Effect of carbon nanotube on the electrochemical performance of C-LiFePO4/graphite battery 

  11. Carbon Tang 103 356 2016 10.1016/j.carbon.2016.03.032 How a very trace amount of graphene additive works for constructing an efficient conductive network in LiCoO2-based lithium ion batteries 

  12. J. Mater. Chem. Su 20 43 9644 2010 10.1039/c0jm01633k Flexible and planar graphene conductive additives for lithium ion batteries 

  13. Science Bonaccorso 347 6217 1246501 2015 10.1126/science.1246501 Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage 

  14. Nat. Nanotechnol. Hernandez 3 9 563 2008 10.1038/nnano.2008.215 High-yield production of graphene by liquid-phase exfoliation of graphite 

  15. J. Phys. D Appl. Phys. Yi 46 2 025301 2013 10.1088/0022-3727/46/2/025301 Achieving concentrated graphene dispersions in water/acetone mixtures by the strategy of tailoring Hansen solubility parameters 

  16. Carbon Guardia 49 5 1653 2011 10.1016/j.carbon.2010.12.049 High-throughput production of pristine graphene in an aqueous dispersion assisted by non-ionic surfactants 

  17. Carbon Liu 49 11 3529 2011 10.1016/j.carbon.2011.04.052 High-concentration organic solutions of poly (styrene-co-butadiene-co-styrene)-modified graphene sheets exfoliated from graphite 

  18. ACS Nano Parvez 4 7 3598 2013 10.1021/nn400576v Electrochemically exfoliated graphene as solution-processable, highly conductive electrodes for organic electronics 

  19. Adv. Mater. Lee 21 43 4383 2010 10.1002/adma.200900726 One-step exfoliation synthesis of easily soluble graphite and transparent conducting graphene sheets 

  20. RSC Adv. Yi 6 76 72525 2016 10.1039/C6RA15269D Fluid dynamics: an emerging route for the scalable production of graphene in the last five years 

  21. J. Mater. Chem. Yi 3 22 11700 2015 10.1039/C5TA00252D A review on mechanical exfoliation for the scalable production of graphene 

  22. Chem. Commun. Chen 48 31 3703 2012 10.1039/c2cc17611d Vortex fluidic exfoliation of graphite and boron nitride 

  23. Nanotechnology Shen 22 36 365306 2011 10.1088/0957-4484/22/36/365306 Preparation of graphene by jet cavitation 

  24. J. Nanosci. Nanotechnol. Liang 15 4 2686 2015 10.1166/jnn.2015.9201 Effects of processing parameters on massive production of graphene by jet cavitation 

  25. Nat. Mater. Paton 13 6 624 2014 10.1038/nmat3944 Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids 

  26. Science Coleman 331 6017 568 2011 10.1126/science.1194975 Two-dimensional nanosheets produced by liquid exfoliation of layered materials 

  27. Carbon Yi 78 622 2014 10.1016/j.carbon.2014.07.035 Kitchen blender for producing high-quality few-layer graphene 

  28. J. Am. Chem. Soc. Lotya 131 10 3611 2009 10.1021/ja807449u Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions 

  29. Nat. Commun. Dong 9 1 76 2018 10.1038/s41467-017-02580-3 A non-dispersion strategy for large-scale production of ultrahigh concentration graphene slurries in water 

  30. J. Am. Chem. Soc. Parvez 136 16 6083 2014 10.1021/ja5017156 Exfoliation of graphite into graphene in aqueous solutions of inorganic salts 

  31. Adv. Mater. Wu 29 3 1602960 2017 10.1002/adma.201602960 Stacked-layer hetero structure films of 2dthiophene nanosheets and graphene for high-rate all-solid-state pseudo capacitors with enhanced volumetric capacitance 

  32. ACS Nano Lu 2 9 1825 2008 10.1021/nn800244k Nanometal-decorated exfoliated graphite nanoplatelet based glucose biosensors with high sensitivity and fast response 

  33. Carbon Dong 48 3 781 2010 10.1016/j.carbon.2009.10.027 Graphene-supported platinum and platinum-ruthenium nanoparticles with high electrocatalytic activity for methanol and ethanol oxidation 

  34. ACS Nano Torrisi 6 2992 2012 10.1021/nn2044609 Injet printed graphene electronics 

  35. Adv. Mater. Li 25 29 3985 2013 10.1002/adma.201300361 Efficient inkjet printing of graphene 

  36. J. Mater. Sci. Liu 49 1 2014 10.1007/s10853-013-7708-8 Graphene for reducing bubble defects and enhancing mechanical properties of graphene/cellulose acetate composite film 

  37. J. Appl. Polym. Sci. Liu 131 11 2014 10.1002/app.40292 Enhanced atomic oxygen erosion resistance and mechanical properties of graphene/cellulose acetate composite films 

  38. Carbon Liang 96 1181 2016 10.1016/j.carbon.2015.10.077 In-situ exfoliated graphene for high-performance water-based lubricants 

  39. J. Power Sources Pham 244 4 280 2013 10.1016/j.jpowsour.2013.01.053 Liquid phase co-exfoliated MoS2/graphene composites as anode materials for lithium ion batteries 

  40. J. MAter. Chem. A4. Sun 18 6886 2015 Binder-free graphene as advanced anode for lithium batteries 

  41. J. Mater. Chem. Zhou 21 10 3353 2011 10.1039/c0jm03287e Graphene modified LiFePO4 cathode materials for high power lithium ion batteries 

  42. Nano Energy Su 1 3 429 2012 10.1016/j.nanoen.2012.02.004 Could graphene construct an effective conducting network in a high-power lithium ion battery? 

  43. Carbon92 Ke 311 2015 10.1016/j.carbon.2015.04.064 Electrode thickness control: precondition for quite different functions of graphene conductive additives in LiFePO4 electrode 

  44. Nat. Commun. Hu 4 1687 2013 10.1038/ncomms2705 Graphene modified LiFePO4 cathode for lithium ion battery beyond theoretical capacity 

  45. ACS Appl. Mater. Interfaces Venkateswara Rao 3 8 2966 2011 10.1021/am200421h LiNi1/3Co1/3Mn1/3O2-graphene composite as a promising cathode for Lithium-ion batteries 

  46. Phys. Chem. Chem. Phys. Jiang 15 17 6406 2013 10.1039/c3cp44516j Using graphene nanosheets as a conductive additive to enhance the rate performance of spinel (limn2o4 cathode material 

  47. J. Power Sources Tang 295 131 2015 10.1016/j.jpowsour.2015.06.145 Carbon gel assisted low temperature liquid-phase synthesis of C-LiFePO4/graphene layers with high rate and cycle performances 

  48. J. Power Sources Mun 251 386 2014 10.1016/j.jpowsour.2013.11.034 Nano LiFePO4 in reduced graphene oxide framework for efficient high-rate lithium storage 

  49. J. Power Sources Tang 412 677 2019 10.1016/j.jpowsour.2018.12.009 In-situ and selectively laser reduced graphene oxide sheets as excellent conductive additive for high rate capability LiFePO4 lithium ion batteries 

  50. Mater. Chem. Front. Yao 3 2 339 2019 10.1039/C8QM00499D 3d hollow reduced graphene oxide foam as a stable host for high-capacity lithium metal anodes 

  51. J. Phys. Chem. C Barwich 117 37 19212 2013 10.1021/jp4047006 A technique to pretreat graphite which allows the rapid dispersion of defect-free graphene in solvents at high concentration 

  52. J. Colloid Interface Sci. Gudarzi 366 1 44 2012 10.1016/j.jcis.2011.09.086 Molecular level dispersion of graphene in polymer matrices using colloidal polymer and graphene 

  53. J. Phys. D Appl. Phys. Yi 46 2 2012 10.1088/0022-3727/46/2/025301 Achieving concentrated graphene dispersions in water/acetone mixtures by the strategy of tailoring Hansen solubility parameters 

  54. Nat. Nanotechnol. Shih 6 7 439 2011 10.1038/nnano.2011.94 Bi-and trilayer graphene solutions 

  55. J. Nanoparticle Res. Yi 14 8 1003 2012 10.1007/s11051-012-1003-5 A mixed-solvent strategy for facile and green preparation of graphene by liquid-phase exfoliation of graphite 

  56. J. Mater. Chem. Stankovich 16 2 155 2006 10.1039/B512799H Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly (sodium 4-styrenesulfonate) 

  57. Carbon Stankovich 45 7 1558 2007 10.1016/j.carbon.2007.02.034 Synthesis of graphene based nanosheets via chemical reduction of exfoliated graphite oxide 

  58. J. Electrochem. Soc. Dettla-Weglikowska 158 2 A174 2011 10.1149/1.3526601 Effect of single walled carbon nanotubes as conductive additives on the performance of LiCoO2-based electrodes 

  59. J. Mater. Chem. Li 3 5 2025 2015 10.1039/C4TA03293D Surfactants assisted synthesis of nano-LiFePO4/C composite as cathode materials for lithium-ion batteries 

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로