$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Thermo-hydraulic and economic optimization of Iranol refinery oil heat exchanger with Copper oxide nanoparticles using MOMBO

Physica. A, v.540, 2020년, pp.123010 -   

Daniali, Omid Ali (Corresponding author.) ,  Toghraie, Davood ,  Eftekhari, S. Ali

Abstract AI-Helper 아이콘AI-Helper

Abstract Thermal efficiency and total cost are essential parameters in the design of shell and tube heat exchanger. In this study, both of these parameters are considered as two separate objective functions. Total cost includes the cost of construction and the cost of operation. In this research, C...

주제어

참고문헌 (71)

  1. Heat Transfer Eng. Rao 12 3 47 1991 10.1080/01457639108939756 Synthesis of cost-optimal shell-and-tube heat exchangers 

  2. Appl. Therm. Eng. Costa 28 14-15 1798 2008 10.1016/j.applthermaleng.2007.11.009 Design optimization of shell-and-tube heat exchangers 

  3. Chem. Eng. Res. Des. Ponce-Ortega 84 10 905 2006 10.1205/cherd05029 Minimum-investment design of multiple shell and tube heat exchangers using a MINLP formulation 

  4. Appl. Therm. Eng. Fesanghary 29 5-6 1026 2009 10.1016/j.applthermaleng.2008.05.018 Design optimization of shell and tube heat exchangers using global sensitivity analysis and harmony search algorithm 

  5. Appl. Therm. Eng. Ponce-Ortega 29 2-3 203 2009 10.1016/j.applthermaleng.2007.06.040 Use of genetic algorithms for the optimal design of shell-and-tube heat exchangers 

  6. Comput. Chem. Eng. Ravagnani 31 11 1432 2007 10.1016/j.compchemeng.2006.12.005 Optimal heat exchanger network synthesis with the detailed heat transfer equipment design 

  7. Appl. Therm. Eng. Caputo 28 10 1151 2008 10.1016/j.applthermaleng.2007.08.010 Heat exchanger design based on economic optimisation 

  8. Appl. Therm. Eng. Ozcelik 27 11-12 1849 2007 10.1016/j.applthermaleng.2007.01.007 Exergetic optimization of shell and tube heat exchangers using a genetic based algorithm 

  9. Bejan 1996 Thermal Design and Optimization 

  10. Int. J. Heat Mass Transfer Johannessen 45 13 2649 2002 10.1016/S0017-9310(01)00362-3 Minimizing the entropy production in heat exchange 

  11. Int. Commun. Heat Mass Transfer Sun 20 5 675 1993 10.1016/0735-1933(93)90079-B Optimization in calculation of shell-tube heat exchanger 

  12. Ind. Eng. Chem. Res. Tayal 38 2 456 1999 10.1021/ie980308n Optimal design of heat exchangers: A genetic algorithm framework 

  13. Stoecker 1980 Design of Thermal Systems 

  14. B.V. Badu, S.A. Munawar, Differential Evolution for the Optimal Design of Heat Exchangers. in: Proceedings of All-India seminar on Chemical Engineering Process on Resource Development, Vol. 3 2000. 

  15. Chem. Eng. Process.: Process. Intensif. Selba 45 4 268 2006 10.1016/j.cep.2005.07.004 A new design approach for shell-and-tube heat exchangers using genetic algorithms from economic point of view 

  16. Chem. Eng. Res. Des. Agarwal 86 2 123 2008 10.1016/j.cherd.2007.11.005 Jumping gene adaptations of NSGA-II and their use in the multi-objective optimal design of shell and tube heat exchangers 

  17. Int. J. Heat Mass Transfer Hilbert 49 15-16 2567 2006 10.1016/j.ijheatmasstransfer.2005.12.015 Multi-objective shape optimization of a heat exchanger using parallel genetic algorithms 

  18. Appl. Therm. Eng. Liu 28 5-6 601 2008 10.1016/j.applthermaleng.2007.04.010 Multi-objective optimization design analysis of primary surface recuperator for microturbines 

  19. Kern 1950 Process Heat Transfer 

  20. Handb. Heat Exch. Des. Taborek 1983 3 1983 Shell-and-tube heat exchangers: single-phase flow 

  21. Appl. Therm. Eng. Caputo 28 10 1151 2008 10.1016/j.applthermaleng.2007.08.010 Heat exchanger design based on economic optimisation 

  22. Appl. Therm. Eng. Ponce-Ortega 29 2-3 203 2009 10.1016/j.applthermaleng.2007.06.040 Use of genetic algorithms for the optimal design of shell-and-tube heat exchangers 

  23. Appl. Therm. Eng. Patel 30 11-12 1417 2010 10.1016/j.applthermaleng.2010.03.001 Design optimization of shell-and-tube heat exchanger using particle swarm optimization technique 

  24. Energy Convers. Manage. ahin 52 11 3356 2011 10.1016/j.enconman.2011.07.003 Design and economic optimization of shell and tube heat exchangers using Artificial Bee Colony (ABC) algorithm 

  25. Appl. Therm. Eng. Fesanghary 29 5-6 1026 2009 10.1016/j.applthermaleng.2008.05.018 Design optimization of shell and tube heat exchangers using global sensitivity analysis and harmony search algorithm 

  26. Energy Azad 36 2 1087 2011 10.1016/j.energy.2010.11.041 Economic optimization of shell and tube heat exchanger based on constructal theory 

  27. Bejan 1982 Entropy Generation Through Heat and Fluid Flow 

  28. Appl. Math. Model. Rao 37 3 1147 2013 10.1016/j.apm.2012.03.043 Multi-objective optimization of heat exchangers using a modified teaching-learning-based optimization algorthm 

  29. Int. J. Heat Mass Transfer Fettaka 60 343 2013 10.1016/j.ijheatmasstransfer.2012.12.047 Design of shell-and-tube heat exchangers using multiobjective optimization 

  30. Ind. Eng. Chem. Res. Chaudhuri 36 9 3685 1997 10.1021/ie970010h An automated approach for the optimal design of heat exchangers 

  31. Appl. Therm. Eng. Ozcelik 27 11-12 1849 2007 10.1016/j.applthermaleng.2007.01.007 Exergetic optimization of shell and tube heat exchangers using a genetic based algorithm 

  32. Appl. Therm. Eng. Caputo 28 10 1151 2008 10.1016/j.applthermaleng.2007.08.010 Heat exchanger design based on economic optimization 

  33. Numer. Heat Transfer A Ozkol 48 3 283 2005 10.1080/10407780590948891 Determination of the optimum geometry of the heat exchanger body via a genetic algorithm 

  34. Int. J. Heat Mass Transfer Hilbert 49 15-16 2567 2006 10.1016/j.ijheatmasstransfer.2005.12.015 Multi-objective shape optimization of a heat exchanger using parallel genetic algorithms 

  35. Chem. Eng. Process.: Process. Intensif. Ponce-Ortega 47 5 906 2008 10.1016/j.cep.2007.02.004 Design and optimization of multipass heat exchangers 

  36. Int. J. Therm. Sci. Rao 49 9 1712 2010 10.1016/j.ijthermalsci.2010.04.001 Thermodynamic optimization of cross flow plate-fin heat exchanger using a particle swarm optimization algorithm 

  37. J. Heat Transfer Vargas 123 4 760 2001 10.1115/1.1375811 Integrative thermodynamic optimization of the crossflow heat exchanger for an aircraft environmental control system 

  38. Chem. Eng. Res. Des. Jegede 70 2 133 1992 Optimum heat exchanger design 

  39. Kern 1950 Process Heat Transfer 

  40. Handb. Heat Exch. Des. Taborek 1983 3 1983 Shell-and-tube heat exchangers: single-phase flow 

  41. Trans. Inst. Chem. Eng. Polley 68 1990 Pressure drop considerations in the retrofit of heat exchanger networks 

  42. Chem. Eng. Res. Des. Serna 83 5 539 2005 10.1205/cherd.03192 A compact formulation of the Bell-Delaware method for heat exchanger design and optimization 

  43. Appl. Therm. Eng. Fesanghary 29 5-6 1026 2009 10.1016/j.applthermaleng.2008.05.018 Design optimization of shell and tube heat exchangers using global sensitivity analysis and harmony search algorithm 

  44. Appl. Therm. Eng. Patel 30 11-12 1417 2010 10.1016/j.applthermaleng.2010.03.001 Design optimization of shell-and-tube heat exchanger using particle swarm optimization technique 

  45. Energy Convers. Manage. ahin 52 11 3356 2011 10.1016/j.enconman.2011.07.003 Design and economic optimization of shell and tube heat exchangers using Artificial Bee Colony (ABC) algorithm 

  46. Appl. Therm. Eng. Amini 69 1-2 278 2014 10.1016/j.applthermaleng.2013.11.034 Two objective optimization in shell-and-tube heat exchangers using genetic algorithm 

  47. ASME FED Choi 66 99 1995 Developments and applications of non-Newtonian flows 

  48. J. Taborek, Industrial heat exchanger design practices in boiler evaporators and condenser. 1991. 

  49. Kakac 2012 Heat Exchangers: Selection, Rating, and Thermal Design 

  50. Kakac 2000 Heat Exchangers Selection Rating, and Thermal Design 

  51. Bergman 2011 Fundamentals of Heat and Mass Transfer 

  52. Int. J. Heat Mass Transfer Sundar 53 7-8 1409 2010 10.1016/j.ijheatmasstransfer.2009.12.016 Turbulent heat transfer and friction factor of Al2O3 nanofluid in circular tube with twisted tape inserts 

  53. J. Magn. Magn. Mater. Barnoon 483 224 2019 10.1016/j.jmmm.2019.03.108 MHD Mixed convection and entropy generation in a lid-driven cavity with rotating cylinders filled by a nanofluid using two phase mixture model 

  54. Commun. Math. Anal. Barnoon 77 662 2019 Entropy generation analysis of different nanofluid flows in the space between two concentric horizontal pipes in the presence of magnetic field: Single-phase and two-phase approaches 

  55. Physica A Ruhani 525 741 2019 10.1016/j.physa.2019.03.118 Statistical investigation for developing a new model for rheological behavior of ZnO-Ag (50%-50%)/Water hybrid Newtonian nanofluid using experimental data 

  56. J. Therm. Anal. Calorim. Moradi 2019 10.1007/s10973-019-08076-0 An experimental study on MWCNT-water nanofluids flow and heat transfer in double-pipe heat exchanger using porous media 

  57. J. Molecular Liquids Keyvani 266 211 2018 10.1016/j.molliq.2018.06.010 An experimental study on the thermal conductivity of cerium oxide/ethylene glycol nanofluid: developing a new correlation 

  58. Physica E Saeedi 99 285 2018 10.1016/j.physe.2018.02.018 An experimental study on rheological behavior of a nanofluid containing oxide nanoparticle and proposing a new correlation 

  59. Powder Technol. Akhgar 338 806 2018 10.1016/j.powtec.2018.07.086 An experimental study on the stability and thermal conductivity of water-ethylene glycol/TiO2-MWCNTs hybrid nanofluid: developing a new correlation 

  60. J. Therm. Anal. Calorim. Deris Zadeh 131 1449 2018 10.1007/s10973-017-6696-3 Experimental investigation for developing a new model for the dynamic viscosity of silver/ethylene glycol nanofluid at different temperatures and solid volume fractions 

  61. J. Therm. Anal. Calorim. Afshari 132 1001 2018 10.1007/s10973-018-7009-1 Experimental investigation of rheological behavior of the hybrid nanofluid of MWCNT-alumina/water (80%)-ethylene-glycol (20%) 

  62. J. Molecular Liquids Ahmadi Esfahani 232 105 2017 10.1016/j.molliq.2017.02.037 Experimental investigation for developing a new model for the thermal conductivity of silica/water-ethylene glycol (40%-60%) nanofluid at different temperatures and solid volume fractions 

  63. J. Mech. Sci. Tech. Kazemi 29 2957 2015 10.1007/s12206-015-0626-8 Experimental investigation of Thixoforging Process on Microstructure and Mechanical Properties of the Centrifugal Pump Flange 

  64. J. Therm. Anal. Calorim Arabpour 131 3 2975 2018 10.1007/s10973-017-6813-3 Investigation into the effects of slip boundary condition on nanofluid flow in a double-layer microchannel 

  65. J. Therm. Anal. Calorim. Hosseinnezhad 132 1 741 2018 10.1007/s10973-017-6900-5 Numerical study of turbulent nanofluid heat transfer in a tubular heat exchanger with twin twisted-tape inserts 

  66. Physica B Alrashed 537 176 2018 10.1016/j.physb.2018.02.022 Goodarzi, the numerical modeling of water/FMWCNT nanofluid flow and heat transfer in a backward-facing contracting channel 

  67. Energy Hemmat Esfe 137 160 2017 10.1016/j.energy.2017.06.104 Multi-objective optimization of nanofluid flow in double tube heat exchangers for applications in energy systems 

  68. Int. Commun. Heat Mass Transfer Hemmat Esfe 74 125 2016 10.1016/j.icheatmasstransfer.2016.02.002 Estimation of thermal conductivity of Al2O3/water (40%)-ethylene glycol (60%) by artificial neural network and correlation using experimental data 

  69. Int. Commun. Heat Mass Transfer Hemmat Esfe 75 192 2016 10.1016/j.icheatmasstransfer.2016.04.002 Designing an artificial neural network to predict dynamic viscosity of aqueous nanofluid of TiO2 using experimental data 

  70. Physica E Parsaiemehr 96 73 2018 10.1016/j.physe.2017.10.012 Turbulent flow and heat transfer of Water/Al2O3 nanofluid inside a rectangular ribbed channel 

  71. J. Therm. Anal. Calorim. Toghraie 131 2 1757 2018 10.1007/s10973-017-6624-6 Numerical investigation of flow and heat transfer characteristics in smooth 

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로