$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Niclosamide encapsulated polymeric nanocarriers for targeted cancer therapy 원문보기

RSC advances, v.9 no.46, 2019년, pp.26572 - 26581  

Jain, Nishant Kumar (Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay (IIT-B) Powai Mumbai 400076 India rsrivasta@iitb.ac.in) ,  R. S., Prabhuraj (Centre for Research in Nanotechnology and Science, Indian Institute of Technology Bombay (IIT-B) Powai Mumbai 400076 India) ,  Bavya, M. C. (Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay (IIT-B) Powai Mumbai 400076 India rsrivasta@iitb.ac.in) ,  Prasad, Rajendra (Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay (IIT-B) Powai Mumbai 400076 India rsrivasta@iitb.ac.in) ,  Bandyopadhyaya, Rajdip (Department of Chemical Engineering, Indian Institute of Technology Bombay (IIT-B) Powai Mumbai 400076 India) ,  Naidu, V. G. M. (Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Guwahati Assam 781125 India) ,  Srivastava, Rohit

Abstract AI-Helper 아이콘AI-Helper

Localized cancer rates are on an upsurge, severely affecting mankind across the globe. Timely diagnosis and adopting appropriate treatment strategies could improve the quality of life significantly reducing the mortality and morbidity rates. Recently, nanotherapeutics has precipitously shown increas...

참고문헌 (56)

  1. Wiwanitkit V. Cancer nanotherapy: concept for design of new drug J. Med. Hypotheses Ideas 2013 7 3 4 10.1016/j.jmhi.2012.10.002 10.1016/j.jmhi.2012.10.002 

  2. Ediriwickrema A. Saltzman W. M. Nanotherapy for Cancer: Targeting and Multifunctionality in the Future of Cancer Therapies ACS Biomater. Sci. Eng. 2015 1 64 78 10.1021/ab500084g 10.1021/ab500084g 25984571 

  3. Goodman L. S. Wintrobe M. M. Dameshek W. Goodman M. J. Gilman A. McLennan M. T. Nitrogen mustard therapy: use of methyl-bis(beta-chloroethyl)amine hydrochloride and tris(beta-chloroethyl)amine hydrochloride for hodgkin's disease, lymphosarcoma, leukemia and certain allied and miscellaneous disorders J. Am. Med. Assoc. 1946 132 126 132 10.1001/jama.1946.02870380008004 10.1001/jama.1946.02870380008004 20997191 

  4. Elbashir S. M. Harborth J. Lendeckel W. Yalcin A. Weber K. Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells Nature 2001 411 494 10.1038/35078107 10.1038/35078107 11373684 

  5. Minke B. Wu C.-F. Pak W. Continuous cultures of fused cells secreting antibody of predefined specificity Nature 1975 254 84 87 10.1038/253600a0 10.1038/258084a0 810728 

  6. Rizzoli G. Gregio L. Mazzucco A. Stritoni P. Fracasso A. Brumana T. Gallucci V. Determinants of late survival of 105 patients operated for dissection of the aorta Eur. J. Cardiothorac. Surg. 1988 2 18 24 10.1016/1010-7940(88)90091-7 10.1016/1010-7940(88)90091-7 3272195 

  7. Peer D. Karp J. M. Hong S. Farokhzad O. C. Margalit R. Langer R. Nanocarriers as an emerging platform for cancer therapy Nat. Nanotechnol. 2007 2 751 760 10.1038/nnano.2007.387 10.1038/nnano.2007.387 18654426 

  8. Biswas A. K. Islam M. R. Choudhury Z. S. Mostafa A. Kadir M. F. Nanotechnology based approaches in cancer therapeutics Adv. Nat. Sci. Nanosci. Nanotechnol. 2014 5 043001 10.1088/2043-6262/5/4/043001 10.1088/2043-6262/5/4/043001 

  9. Costa D. F. Mendes L. P. Torchilin V. P. The effect of low- and high-penetration light on localized cancer therapy Adv. Drug Deliv. Rev. 2018 138 105 116 10.1016/j.addr.2018.09.004 10.1016/j.addr.2018.09.004 30217518 

  10. Kreuter J. Nanoparticles-a historical perspective Int. J. Pharm. 2007 331 1 10 10.1016/j.ijpharm.2006.10.021 10.1016/j.ijpharm.2006.10.021 17110063 

  11. Singh A. Talekar M. Tran T.-H. Samanta A. Sundaram R. Amiji M. Combinatorial approach in the design of multifunctional polymeric nano-delivery systems for cancer therapy J. Mater. Chem. B 2014 2 8069 8084 10.1039/C4TB01083C 10.1039/C4TB01083C 32262094 

  12. Wiwanitkit V. , Advanced nanomedicine and nanobiotechnology , 2008 

  13. Prasad R. Yadav A. S. Gorain M. Chauhan D. S. Kundu G. C. Srivastava R. Selvaraj K. Graphene Oxide Supported Liposomes as Red Emissive Theranostics for Phototriggered Tissue Visualization and Tumor Regression ACS Appl. Bio Mater. 2019 2 3312 3320 10.1021/acsabm.9b00335 10.1021/acsabm.9b00335 

  14. Opoku-Damoah Y. Wang R. Zhou J. Ding Y. Versatile nanosystem-based cancer theranostics: design inspiration and predetermined routing Theranostics 2016 6 986 1003 10.7150/thno.14860 10.7150/thno.14860 27217832 

  15. Huang R. Vider J. Serganova I. Blasberg R. G. Sloan M. Cancer K. Sloan M. Cancer K. Cancer nanomedicine: progress, challenges and opportunities Nat. Rev. Cancer 2014 10 215 226 10.1038/nrc.2016.108.Cancer 

  16. Anderson D. S. Sydor M. J. Fletcher P. Holian A. Nanotechnology: The Risks and Benefits for Medical Diagnosis and Treatment J. Nanomed. Nanotechnol. 2016 7 e143 10.4172/2157-7439.1000 

  17. Barenholz Y. Doxil® - the first FDA-approved nano-drug: lessons learned J. Controlled Release 2012 160 117 134 10.1016/j.jconrel.2012.03.020 10.1016/j.jconrel.2012.03.020 22484195 

  18. Sneider A. VanDyke D. Paliwal S. Rai P. Remotely Triggered Nano-Theranostics For Cancer Applications Nanotheranostics 2017 1 1 22 10.7150/ntno.17109 10.7150/ntno.17109 28191450 

  19. Makadia H. K. Siegel S. J. Poly Lactic- co -Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier Polymers 2011 3 1377 1397 10.3390/polym3031377.Poly 10.3390/polym3031377 22577513 

  20. Danhier F. Ansorena E. Silva J. M. Coco R. Le Breton A. Préat V. PLGA-based nanoparticles: an overview of biomedical applications J. Controlled Release 2012 161 505 522 10.1016/j.jconrel.2012.01.043 10.1016/j.jconrel.2012.01.043 22353619 

  21. Jain R. A. The manufacturing techniques of various drug loaded biodegradable poly(lactide- co -glycolide) (PLGA) devices Biomaterials 2000 21 2475 2490 10.1016/S0142-9612(00)00115-0 10.1016/S0142-9612(00)00115-0 11055295 

  22. Lu J.-M. Wang X. Marin-Muller C. Wang H. Lin P. H. Yao Q. Chen C. Current advances in research and clinical applications of PLGA-based nanotechnology Expert Rev. Mol. Med. 2009 9 325 341 10.1586/erm.09.15.Current 10.1586/erm.09.15 19435455 

  23. Choi J. S. Seo K. Yoo J. W. Recent advances in PLGA particulate systems for drug delivery J. Pharm. Invest. 2012 42 155 163 10.1007/s40005-012-0024-5 10.1007/s40005-012-0024-5 

  24. Passerini N. Craig D. Q. M. An investigation into the effects of residual water on the glass transition temperature of polylactide microspheres using modulated temperature DSC J. Control. Release. 2001 73 111 115 10.1016/S0168-3659(01)00245-0 10.1016/S0168-3659(01)00245-0 11337064 

  25. Mattheolabakis G. Milane L. Singh A. Amiji M. M. Hyaluronic acid targeting of CD44 for cancer therapy: from receptor biology to nanomedicine J. Drug Targeting 2015 23 605 618 10.3109/1061186X.2015.1052072 10.3109/1061186X.2015.1052072 26453158 

  26. Deed R. Rooney P. Kumar P. Norton J. D. Smith J. Freemont A. J. Kumar S. Early-response gene signalling is induced by angiogenic oligosaccharides of hyaluronan in endothelial cells. Inhibition by non-angiogenic, high- molecular-weight hyaluronan Int. J. Cancer 1997 71 251 256 10.1002/(SICI)1097-0215(19970410)71:2<251::AID-IJC21>3.0.CO;2-J 10.1002/(SICI)1097-0215(19970410)71:2<251::AID-IJC21>3.0.CO;2-J 9139851 

  27. Bollyky P. L. Falk B. A. Wu R. P. Buckner J. H. Wight T. N. Nepom G. T. Intact extracellular matrix and the maintenance of immune tolerance: high molecular weight hyaluronan promotes persistence of induced CD4+CD25+ regulatory T cells J. Leukocyte Biol. 2009 86 567 572 10.1189/jlb.0109001 10.1189/jlb.0109001 19401397 

  28. Wolny P. M. Banerji S. Gounou C. Brisson A. R. Day A. J. Jackson D. G. Richter R. P. Analysis of CD44-hyaluronan interactions in an artificial membrane system: insights into the distinct binding properties of high and low molecular weight hyaluronan J. Biol. Chem. 2010 285 30170 30180 10.1074/jbc.M110.137562 10.1074/jbc.M110.137562 20663884 

  29. Huang G. Huang H. Application of hyaluronic acid as carriers in drug delivery Drug Deliv. 2018 25 766 772 10.1080/10717544.2018.1450910 10.1080/10717544.2018.1450910 29536778 

  30. Kim J. Moon M. Kim D. Heo S. Jeong Y. Hyaluronic Acid-Based Nanomaterials for Cancer Therapy Polymers 2018 10 1133 10.3390/polym10101133 10.3390/polym10101133 30961058 

  31. Tao H. Zhang Y. Zeng X. Shulman G. I. Jin S. Niclosamide ethanolamine–induced mild mitochondrial uncoupling improves diabetic symptoms in mice Nat. Med. 2014 20 1263 1269 10.1038/nm.3699 10.1038/nm.3699 25282357 

  32. Li Y. Li P. K. Roberts M. J. Arend R. C. Samant R. S. Buchsbaum D. J. Multi-targeted therapy of cancer by niclosamide: a new application for an old drug Cancer Lett. 2014 349 8 14 10.1016/j.canlet.2014.04.003 10.1016/j.canlet.2014.04.003 24732808 

  33. Shuai K. Horvath C. M. Huang L. H. T. Qureshi S. A. Cowburn D. Darnell J. E. Interferon activation of the transcription factor Stat91 involves dimerization through SH2-phosphotyrosyl peptide interactions Cell 1994 76 821 828 10.1016/0092-8674(94)90357-3 10.1016/0092-8674(94)90357-3 7510216 

  34. Clevers H. Nusse R. Wnt/β-catenin signaling and disease Cell 2012 149 1192 1205 10.1016/j.cell.2012.05.012 10.1016/j.cell.2012.05.012 22682243 

  35. Guertin D. A. Sabatini D. M. Defining the Role of mTOR in Cancer Cancer Cell 2007 12 9 22 10.1016/j.ccr.2007.05.008 10.1016/j.ccr.2007.05.008 17613433 

  36. Naugler W. E. Karin M. NF-κB and cancer - identifying targets and mechanisms Curr. Opin. Genet. Dev. 2008 18 19 26 10.1016/j.gde.2008.01.020 10.1016/j.gde.2008.01.020 18440219 

  37. Shih I. M. Wang T. L. Notch signaling, gamma-secretase inhibitors, and cancer therapy Cancer Res. 2007 67 1879 1882 10.1158/0008-5472.CAN-06-3958 10.1158/0008-5472.CAN-06-3958 17332312 

  38. Ramalho M. J. Pereira M. C. Preparation and Characterization of Polymeric Nanoparticles: An Interdisciplinary Experiment J. Chem. Educ. 2016 93 1446 1451 10.1021/acs.jchemed.5b00837 10.1021/acs.jchemed.5b00837 

  39. Sun S. Liu P. Shao F. Miao Q. Formulation and evaluation of PLGA nanoparticles loaded capecitabine for prostate cancer Int. J. Clin. Exp. Med. 2015 8 19670 19681 26770631 

  40. Gajra B. Dalwadi C. Patel R. Formulation and optimization of itraconazole polymeric lipid hybrid nanoparticles (Lipomer) using box behnken design Daru, J. Pharm. Sci. 2015 23 1 15 10.1186/s40199-014-0087-0 10.1186/s40199-015-0089-6 25582169 

  41. Yadav K. S. Sawant K. K. Modified Nanoprecipitation Method for Preparation of Cytarabine-Loaded PLGA Nanoparticles AAPS PharmSciTech 2010 11 1456 1465 10.1208/s12249-010-9519-4 10.1208/s12249-010-9519-4 20842542 

  42. Pereira M. C. Hill L. E. Carlos R. Mertens-talcott S. Talcott S. Gomes C. L. LWT - Food Science and Technology Nanoencapsulation of hydrophobic phytochemicals using poly(DL-lactide- co -glycolide)(PLGA) for antioxidant and antimicrobial delivery applications: guabiroba fruit ( Campomanesia xanthocarpa O. Berg) study LWT-Food Sci. Technol. 2015 63 100 107 10.1016/j.lwt.2015.03.062 10.1016/j.lwt.2015.03.062 

  43. Bavya M. C. Vimal Rohan K. Gaurav G. B. Srivasatava R. Synergistic treatment strategies to combat resistant bacterial infections using Schiff base modified nanoparticulate - hydrogel system Mater. Sci. Eng. C 2018 95 226 235 10.1016/j.msec.2018.10.080 10.1016/j.msec.2018.10.080 30573245 

  44. George L. Bavya M. C. Rohan K. V. Srivastava R. A therapeutic polyelectrolyte–vitamin C nanoparticulate system in polyvinyl alcohol–alginate hydrogel: an approach to treat skin and soft tissue infections caused by Staphylococcus aureus Colloids Surf., B 2017 160 315 324 10.1016/j.colsurfb.2017.09.030 10.1016/j.colsurfb.2017.09.030 28950196 

  45. Liu L. Cao F. Liu X. Wang H. Zhang C. Sun H. Wang C. Leng X. Song C. Kong D. Ma G. Hyaluronic Acid-Modified Cationic Lipid-PLGA Hybrid Nanoparticles as a Nanovaccine Induce Robust Humoral and Cellular Immune Responses ACS Appl. Mater. Interfaces 2016 8 11969 11979 10.1021/acsami.6b01135 10.1021/acsami.6b01135 27088457 

  46. Bhushan B. Dubey P. Kumar S. U. Sachdev A. Matai I. Gopinath P. Bionanotherapeutics: niclosamide encapsulated albumin nanoparticles as a novel drug delivery system for cancer therapy RSC Adv. 2015 5 12078 12086 10.1039/C4RA15233F 10.1039/C4RA15233F 

  47. Okassa L. N. Marchais H. Douziech-Eyrolles L. Hervé K. Cohen-Jonathan S. Munnier E. Soucé M. Linassier C. Dubois P. Chourpa I. Optimization of iron oxide nanoparticles encapsulation within poly(d,l-lactide- co -glycolide) sub-micron particles Eur. J. Pharm. Biopharm. 2007 67 31 38 10.1016/j.ejpb.2006.12.020 10.1016/j.ejpb.2006.12.020 17289360 

  48. Shen M. Y. Chao C. F. Wu Y. J. Wu Y. H. Huang C. P. Li Y. K. A design for fast and effective screening of hyaluronidase inhibitor using gold nanoparticles Sens. Actuators B Chem. 2013 181 605 610 10.1016/j.snb.2013.02.054 10.1016/j.snb.2013.02.054 

  49. Van Tonder E. C. Maleka T. S. P. Liebenberg W. Song M. Wurster D. E. De Villiers M. M. Preparation and physicochemical properties of niclosamide anhydrate and two monohydrates Int. J. Pharm. 2004 269 417 432 10.1016/j.ijpharm.2003.09.035 10.1016/j.ijpharm.2003.09.035 14706253 

  50. Martínez-Zaguilán R. Seftor E. A. Seftor R. E. B. Chu Y. W. Gillies R. J. Hendrix M. J. C. Acidic pH enhances the invasive behavior of human melanoma cells Clin. Exp. Metastasis 1996 14 176 186 10.1007/BF00121214 10.1007/BF00121214 8605731 

  51. Xu L. Fukumura D. Jain R. K. Acidic extracellular pH induces vascular endothelial growth factor (VEGF) in human glioblastoma cells via ERK1/2 MAPK signaling pathway. Mechanism of low pH-induced VEGF J. Biol. Chem. 2002 277 11368 11374 10.1074/jbc.M108347200 10.1074/jbc.M108347200 11741977 

  52. Shen Y. Tang H. Radosz M. Van Kirk E. Murdoch W. J. PH-responsive nanoparticles for cancer drug delivery Methods Mol. Biol. 2008 437 183 216 10.1007/978-1-59745-210-6_10 10.1007/978-1-59745-210-6_10 18369970 

  53. Qhattal H. S. S. Liu X. Characterization of CD44-mediated cancer cell uptake and intracellular distribution of hyaluronan-grafted liposomes Mol. Pharm. 2011 8 1233 1246 10.1021/mp2000428 10.1021/mp2000428 21696190 

  54. Amorim S. Soares D. Freitas D. Reis C. A. Reis R. L. Pashkuleva I. Pires R. A. Molecular weight of surface immobilized hyaluronic acid influences CD44-mediated binding of gastric cancer cells Sci. Rep. 2018 1 11 10.1038/s41598-018-34445-0 29311619 

  55. Cadenas E. Mitochondrial free radical production and cell signaling Mol. Asp. Med. 2004 25 17 26 10.1016/j.mam.2004.02.005 10.1016/j.mam.2004.02.005 15051313 

  56. Simon H.-U. Haj-Yehia A. Levi-Schaffer F. Role of reactive oxygen species (ROS) in apoptosis induction Apoptosis 2000 5 415 418 10.1023/A:1009616228304 10.1023/A:1009616228304 11256882 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로