$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Optimization of spray drying conditions for the green manufacture of γ-aminobutyric acid-rich powder from Lactobacillus brevis fermentation broth

Biochemical engineering journal, v.156, 2020년, pp.107499 -   

Ma, Wenyan (Key Laboratory of Industrial Microbiology & Engineering Research Center of Food Biotechnology of Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology) ,  Zhang, Jian (Key Laboratory of Industrial Microbiology & Engineering Research Center of Food Biotechnology of Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology) ,  Shu, Liang (Key Laboratory of Industrial Microbiology & Engineering Research Center of Food Biotechnology of Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology) ,  Tan, Xinqi (Key Laboratory of Industrial Microbiology & Engineering Research Center of Food Biotechnology of Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology) ,  An, Ya (Key Laboratory of Industrial Microbiology & Engineering Research Center of Food Biotechnology of Ministry of Educati) ,  Yang, Xinda ,  Wang, Depei ,  Gao, Qiang

Abstract AI-Helper 아이콘AI-Helper

Abstract Lactobacillus brevis TCCC 13007 was used to produce γ-aminobutyric acid. The fermentation broth was degermed, decolorized and deionized before the green-style spray drying, and the process parameters were optimized. Single-factor experiments were carried out to optimize 7 factors to...

주제어

참고문헌 (45)

  1. Sep. Purif. Technol. Wang 170 353 2016 10.1016/j.seppur.2016.07.002 Recovery of gamma-aminobutyric acid (GABA) from reaction mixtures containing salt by electrodialysis 

  2. J. Agric. Food Chem. Gao 61 1914 2013 10.1021/jf304749v Separation and purification of γ-aminobutyric acid from fermentation broth by flocculation and chromatographic methodologies 

  3. Microb. Biotechnol. Yang 9 478 2016 10.1111/1751-7915.12301 Accumulation of γ-aminobutyric acid by Enterococcus avium 9184 in scallop solution in a two-stage fermentation strategy 

  4. J. Ind. Microbiol. Biotechnol. Chang 44 817 2017 10.1007/s10295-017-1906-3 Purification and characterization of glutamate decarboxylase from Enterococcus raffinosus TCCC11660 

  5. J. Ind. Microbiol. Biotechnol. Shi 44 697 2017 10.1007/s10295-016-1777-z Efficient bioconversion of L-glutamate to γ-aminobutyric acid by Lactobacillus brevis resting cells 

  6. J. Clean. Prod. Lie 205 1102 2018 10.1016/j.jclepro.2018.09.151 Facile and rapid decarboxylation of glutamic acid to γ-aminobutyric acid via microwave-assisted reaction: towards valorisation of waste gluten 

  7. Biochem. Eng. J. Yu 141 252 2019 10.1016/j.bej.2018.10.025 Enhanced biosynthesis of γ-aminobutyric acid (GABA) in Escherichia coli by pathway engineering 

  8. J. Agric. Food Chem. Stromeck 59 1392 2011 10.1021/jf103546t Proteolysis and bioconversion of cereal proteins to glutamate and γ-aminobutyrate (GABA) in rye malt sourdoughs 

  9. Int. J. Food Microbiol. Kim 130 12 2009 10.1016/j.ijfoodmicro.2008.12.028 Production of γ-aminobutyric acid in black raspberry juice during fermentation by Lactobacillus brevis GABA100 

  10. J. Ind. Microbiol. Biotechnol. Li 38 1955 2011 10.1007/s10295-011-0984-x Separation of gamma-aminobutyric acid from fermented broth 

  11. Bioproc. Biosyst. Eng. Adjallé 34 237 2011 10.1007/s00449-010-0466-y Optimization of spray drying process for Bacillus thuringiensis fermented wastewater and wastewater sludge 

  12. Innov. Food Sci. Emerg. Technol. Cano-Chauca 6 420 2005 10.1016/j.ifset.2005.05.003 Effect of the carriers on the microstructure of mango powder obtained by spray drying and its functional characterization 

  13. J. Clean. Prod. Sarteshnizi 197 870 2018 10.1016/j.jclepro.2018.06.220 Production of an environmentally friendly enzymatic feed additive for agriculture animals by spray drying abattoir’s rumen fluid in the presence of different hydrocolloids 

  14. Dry. Technol. Li 30 1698 2012 10.1080/07373937.2012.714824 Yogurt starter obtained from Lactobacillus plantarum by spray drying 

  15. Dry. Technol. Teixeira 29 342 2011 10.1080/07373937.2010.497235 Spray drying of extracts from red yeast fermentation broth 

  16. Biochem. Eng. J. Salar-García 144 119 2019 10.1016/j.bej.2019.01.015 Towards the optimisation of ceramic-based microbial fuel cells: a three-factor three-level response surface analysis design 

  17. Bioresour. Technol. Patil 102 1399 2011 10.1016/j.biortech.2010.09.046 Optimization of microwave-assisted transesterification of dry algal biomass using response surface methodology 

  18. Bioresour. Technol. Gao 99 4012 2009 10.1016/j.biortech.2009.03.013 Medium optimization for the production of avermectin B1a by Streptomyces avermitilis 14-12A using response surface methodology 

  19. Appl. Microbiol. Biotechnol. de O Souza 52 768 1999 10.1007/s002530051589 Solid-state fermentation for xylanase production by Thermoascus aurantiacususing response surface methodology 

  20. Appl. Microbiol. Biotechnol. Zhang 94 1619 2012 10.1007/s00253-012-3868-8 The two-step biotransformation of monosodium glutamate to GABA by Lactobacillus brevis growing and resting cells 

  21. J. Chromatogr. A Chen 1509 19 2019 10.1016/j.chroma.2019.01.002 Disassociation of glutamate from γ-aminobutyric acid by zinc acetate-assisted differential precipitation/dissolution: application to the quantification of γ-aminobutyric acid 

  22. Dry. Technol. Chegini 23 657 2005 10.1081/DRT-200054161 Effect of spray-drying conditions on physical properties of orange juice powder 

  23. Dry. Technol. Mestry 29 1121 2011 10.1080/07373937.2011.566968 Optimization of spray drying of an innovative functional food: fermented mixed juice of carrot and watermelon 

  24. Powder Technol. Nair 342 156 2019 10.1016/j.powtec.2018.09.096 Application of quality by design for optimization of spray drying process used in drying of Risperidone nanosuspension 

  25. Adv. Powder Technol. Nandiyanto 22 1 2011 10.1016/j.apt.2010.09.011 Progress in developing spray-drying methods for the production of controlled morphology particles: from the nanometer to submicrometer size ranges 

  26. J. Aerosol Sci. Vehring 38 728 2007 10.1016/j.jaerosci.2007.04.005 Particle formation in spray drying 

  27. Biosyst. Eng. Zhou 88 193 2004 10.1016/j.biosystemseng.2004.02.004 Effects of spray drying parameters on the processing of a fermentation liquor 

  28. J. Food Qual. Selvamuthukumaran 29 305 2010 10.1111/j.1745-4557.2006.00075.x Optimization of spray drying conditions for production of bifidus milk powder from cow milk 

  29. Food Chem. Dantas 266 284 2018 10.1016/j.foodchem.2018.06.016 Influence of spray drying conditions on the properties of avocado powder drink 

  30. Innov. Food Sci. Emerg. Technol. Goula 11 342 2010 10.1016/j.ifset.2009.12.001 A new technique for spray drying orange juice concentrate 

  31. Biochem. Eng. J. Fang 62 101 2012 10.1016/j.bej.2011.05.007 Functionality of milk protein concentrate: effect of spray drying temperature 

  32. Pharm. Res. Maa 16 249 1999 10.1023/A:1018828425184 Protein inhalation powders: spray drying vs spray freeze drying 

  33. LWT-Food Sci. Technol. Reale 99 468 2019 10.1016/j.lwt.2018.10.016 Stabilization of sourdough starter by spray drying technique: new breadmaking perspective 

  34. Bioresour. Technol. Park 98 1675 2007 10.1016/j.biortech.2006.06.006 Production of yogurt with enhanced levels of gamma-aminobutyric acid and valuable nutrients using lactic acid bacteria and germinated soybean extract 

  35. J. Pharm. Sci. Elversson 92 900 2003 10.1002/jps.10352 Droplet and particle size relationship and shell thickness of inhalable lactose particles during spray drying 

  36. Biochem. Eng. J. Rogers 62 92 2012 10.1016/j.bej.2011.11.002 Particle shrinkage and morphology of milk powder made with a monodisperse spray dryer 

  37. Food Bioprod. Process. Fazaeli 90 667 2012 10.1016/j.fbp.2012.04.006 Effect of spray drying conditions and feed composition on the physical properties of black mulberry juice powder 

  38. J. Food Eng. Goula 66 25 2005 10.1016/j.jfoodeng.2004.02.029 Spray drying of tomato pulp in dehumidified air: II. The effect on product recovery 

  39. J. Food Eng. Ghandi 115 83 2013 10.1016/j.jfoodeng.2012.09.022 Survival, fermentation activity and storage stability of spray dried Lactococcus lactis produced via different atomization regimes 

  40. J. Agric. Food Chem. Charve 57 2486 2009 10.1021/jf803365t Encapsulation performance of proteins and traditional materials for spray dried flavors 

  41. J. Food Eng. Alamilla-Beltrán 67 179 2005 10.1016/j.jfoodeng.2004.05.063 Description of morphological changes of particles along spray drying 

  42. Dry. Technol. Reineccius 22 1289 2004 10.1081/DRT-120038731 The spray drying of food flavors 

  43. Food Hydrocolloid. Loksuwan 21 928 2007 10.1016/j.foodhyd.2006.10.011 Characteristics of microencapsulated β-carotene formed by spray drying with modified tapioca starch, native tapioca starch and maltodextrin 

  44. J. Pharm. Sci. Cal 99 575 2010 10.1002/jps.21886 Spray drying technique. I: hardware and process parameters 

  45. Biochem. Eng. J. Liu 52 212 2010 10.1016/j.bej.2010.08.013 Optimizing L-(+)-lactic acid production by thermophile Lactobacillus plantarum As.1.3 using alternative nitrogen sources with response surface method 

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로