$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Grain structure control during metal 3D printing by high-intensity ultrasound 원문보기

Nature communications, v.11 no.1 = v.11, 2020년, pp.142 -   

Todaro, C. J. (Centre for Additive Manufacturing, School of Engineering, RMIT University, Melbourne, VIC 3000 Australia) ,  Easton, M. A. (Centre for Additive Manufacturing, School of Engineering, RMIT University, Melbourne, VIC 3000 Australia) ,  Qiu, D. (Centre for Additive Manufacturing, School of Engineering, RMIT University, Melbourne, VIC 3000 Australia) ,  Zhang, D. (Centre for Additive Manufacturing, School of Engineering, RMIT University, Melbourne, VIC 3000 Australia) ,  Bermingham, M. J. (Centre for Advanced Materials Processing and Manufacturing (AMPAM), School of Mechanical and Mining Engineering, The University of Queensland, St Lucia, QLD 4072 Australia) ,  Lui, E. W. (Centre for Additive Manufacturing, School of Engineering, RMIT University, Melbourne, VIC 3000 Australia) ,  Brandt, M. (Centre for Additive Manufacturing, School of Engineering, RMIT University, Melbourne, VIC 3000 Australia) ,  StJohn, D. H. (Centre for Advanced Materials Processing and Manufacturing (AMPAM), School of Mechanical and Mining Engineering, The University of Queensland, St Lucia, QLD 4072 Australia) ,  Qian, M. (Centre for)

Abstract AI-Helper 아이콘AI-Helper

Additive manufacturing (AM) of metals, also known as metal 3D printing, typically leads to the formation of columnar grain structures along the build direction in most as-built metals and alloys. These long columnar grains can cause property anisotropy, which is usually detrimental to component qual...

참고문헌 (70)

  1. 1. Martin JH 3D printing of high-strength aluminium alloys Nature 2017 549 365 369 10.1038/nature23894 28933439 

  2. 2. Barriobero-Vila P Peritectic titanium alloys for 3D printing Nat. Commun. 2018 9 3426 10.1038/s41467-018-05819-9 30143641 

  3. 3. Bermingham MJ StJohn DH Krynen J Tedman-Jones S Dargusch MS Promoting the columnar to equiaxed transition and grain refinement of titanium alloys during additive manufacturing Acta Mater. 2019 168 261 274 10.1016/j.actamat.2019.02.020 

  4. 4. DebRoy T Scientific, technological and economic issues in metal printing and their solutions Nat. Mater. 2019 18 1026 1032 10.1038/s41563-019-0408-2 31263223 

  5. 5. Polmear I StJohn DH Nie J-F Qian M Light Alloys: Metallurgy of the Light Metals 2017 Oxford Butterworth-Heinemann 

  6. 6. Qian M Xu W Brandt M Tang HP Additive manufacturing and postprocessing of Ti-6Al-4V for superior mechanical properties MRS Bull. 2016 41 775 783 10.1557/mrs.2016.215 

  7. 7. Kobryn PA Semiatin SL The laser additive manufacture of Ti-6Al-4V JOM 2001 53 40 42 10.1007/s11837-001-0068-x 

  8. 8. Al-Bermani SS Blackmore ML Zhang W Todd I The origin of microstructural diversity, texture, and mechanical properties in electron beam melted Ti-6Al-4V Metall. Mater. Trans. A 2010 41a 3422 3434 10.1007/s11661-010-0397-x 

  9. 9. Vilaro T Colin C Bartout JD As-fabricated and heat-treated microstructures of the Ti-6Al-4V alloy processed by selective laser melting Metall. Mater. Trans. A 2011 42a 3190 3199 10.1007/s11661-011-0731-y 

  10. 10. Bermingham MJ Nicastro L Kent D Chen Y Dargusch MS Optimising the mechanical properties of Ti-6Al-4V components produced by wire plus arc additive manufacturing with post-process heat treatments J. Alloys Compd. 2018 753 247 255 10.1016/j.jallcom.2018.04.158 

  11. 11. Kobryn PA Semiatin SL Microstructure and texture evolution during solidification processing of Ti-6Al-4V J. Mater. Process. Technol. 2003 135 330 339 10.1016/S0924-0136(02)00865-8 

  12. 12. Antonysamy AA Meyer J Prangnell PB Effect of build geometry on the β-grain structure and texture in additive manufacture of Ti-6Al-4V by selective electron beam melting Mater. Charact. 2013 84 153 168 10.1016/j.matchar.2013.07.012 

  13. 13. Simonelli M Tse YY Tuck C On the texture formation of selective laser melted Ti-6Al-4V Metall. Mater. Trans. A 2014 45a 2863 2872 10.1007/s11661-014-2218-0 

  14. 14. de Formanoir C Michotte S Rigo O Germain L Godet S Electron beam melted Ti?6Al?4V: microstructure, texture and mechanical behavior of the as-built and heat-treated material Mater. Sci. Eng. A 2016 652 105 119 10.1016/j.msea.2015.11.052 

  15. 15. Hayes BJ Predicting tensile properties of Ti-6Al-4V produced via directed energy deposition Acta Mater. 2017 133 120 133 10.1016/j.actamat.2017.05.025 

  16. 16. F42 Committee. WK49229 New Guide for Orientation and Location Dependence Mechanical Properties for Metal Additive Manufacturing (ASTM International, 2015). 

  17. 17. Seifi M Salem A Beuth J Harrysson O Lewandowski JJ Overview of materials qualification needs for metal additive manufacturing JOM 2016 68 747 764 10.1007/s11837-015-1810-0 

  18. 18. Yang, J. J., Yu, H. C., Wang, Z. M. & Zeng, X. Y. Effect of crystallographic orientation on mechanical anisotropy of selective laser melted Ti-6Al-4V alloy. Mater. Charact. 127 , 137?145 (2017). 

  19. 19. Simonelli M Tse YY Tuck C Effect of the build orientation on the mechanical properties and fracture modes of SLM Ti-6Al-4V Mater. Sci. Eng. A 2014 616 1 11 10.1016/j.msea.2014.07.086 

  20. 20. Carroll BE Palmer TA Beese AM Anisotropic tensile behavior of Ti-6Al-4V components fabricated with directed energy deposition additive manufacturing Acta Mater. 2015 87 309 320 10.1016/j.actamat.2014.12.054 

  21. 21. Sen I Tamirisakandala S Miracle D Ramamurty U Microstructural effects on the mechanical behavior of B-modified Ti-6Al-4V alloys Acta Mater. 2007 55 4983 4993 10.1016/j.actamat.2007.05.009 

  22. 22. Tan X Graded microstructure and mechanical properties of additive manufactured Ti-6Al-4V via electron beam melting Acta Mater. 2015 97 1 16 10.1016/j.actamat.2015.06.036 

  23. 23. Ren YM Microstructure and deformation behavior of Ti-6Al-4V alloy by high-power laser solid forming Acta Mater. 2017 132 82 95 10.1016/j.actamat.2017.04.026 

  24. 24. Kar S Modeling the tensile properties in β-processed α/β Ti alloys Metall. Mater. Trans. A 2006 37 559 566 10.1007/s11661-006-0028-8 

  25. 25. Hunt JD Steady-state columnar and equiaxed growth of dendrites and eutectic Mater. Sci. Eng. 1984 65 75 83 10.1016/0025-5416(84)90201-5 

  26. 26. Raghavan N Numerical modeling of heat-transfer and the influence of process parameters on tailoring the grain morphology of IN718 in electron beam additive manufacturing Acta Mater. 2016 112 303 314 10.1016/j.actamat.2016.03.063 

  27. 27. Spierings AB Dawson K Voegtlin M Palm F Uggowitzer PJ Microstructure and mechanical properties of as-processed scandium-modified aluminium using selective laser melting CIRP Ann. 2016 65 213 216 10.1016/j.cirp.2016.04.057 

  28. 28. Li XP Selective laser melting of nano-TiB 2 decorated AlSi10Mg alloy with high fracture strength and ductility Acta Mater. 2017 129 183 193 10.1016/j.actamat.2017.02.062 

  29. 29. Lin TC Aluminum with dispersed nanoparticles by laser additive manufacturing Nat. Commun. 2019 10 4124 10.1038/s41467-019-12047-2 31511518 

  30. 30. Flynn, H. G. in Physical Acoustics (ed Mason, W. P.) 57?172 (Academic Press, New York, 1964). 

  31. 31. Wang B Ultrafast synchrotron X-ray imaging studies of microstructure fragmentation in solidification under ultrasound Acta Mater. 2018 144 505 515 10.1016/j.actamat.2017.10.067 

  32. 32. Suslick KS Price GJ Applications of ultrasound to materials chemistry Annu. Rev. Mater. Sci. 1999 29 295 326 10.1146/annurev.matsci.29.1.295 

  33. 33. Abramov, O. V. Ultrasound in Liquid and Solid Metals (CRC Press, Boca Raton, 1994). 

  34. 34. Eskin, G. I. & Eskin, D. G. Ultrasonic Treatment of Light Alloy Melts 2nd edn (CRC Press, Boca Raton, 2014). 

  35. 35. Cui Y Xu CL Han QY Microstructure improvement in weld metal using ultrasonic vibrations Adv. Eng. Mater. 2007 9 161 163 10.1002/adem.200600228 

  36. 36. Yuan T Kou SD Luo Z Grain refining by ultrasonic stirring of the weld pool Acta Mater. 2016 106 144 154 10.1016/j.actamat.2016.01.016 

  37. 37. Ramirez A Qian M Davis B Wilks T StJohn DH Potency of high-intensity ultrasonic treatment for grain refinement of magnesium alloys Scr. Mater. 2008 59 19 22 10.1016/j.scriptamat.2008.02.017 

  38. 38. Atamanenko TV Eskin DG Zhang L Katgerman L Criteria of grain refinement induced by ultrasonic melt treatment of aluminum alloys containing Zr and Ti Metall. Mater. Trans. A 2010 41a 2056 2066 10.1007/s11661-010-0232-4 

  39. 39. Qian M Ramirez A An approach to assessing ultrasonic attenuation in molten magnesium alloys J. Appl. Phys. 2009 105 013538 10.1063/1.3054374 

  40. 40. Qian M Ramirez A Das A Ultrasonic refinement of magnesium by cavitation: clarifying the role of wall crystals J. Cryst. Growth 2009 311 3708 3715 10.1016/j.jcrysgro.2009.04.036 

  41. 41. Ramirez A Qian M Davis B Wilks T High-intensity ultrasonic grain refinement of magnesium alloys: role of solute Int. J. Cast. Metal. Res. 2009 22 260 263 10.1179/136404609X367894 

  42. 42. Qian M Ramirez A Das A StJohn DH The effect of solute on ultrasonic grain refinement of magnesium alloys J. Cryst. Growth 2010 312 2267 2272 10.1016/j.jcrysgro.2010.04.035 

  43. 43. Dinda GP Dasgupta AK Mazumder J Laser aided direct metal deposition of Inconel 625 superalloy: Microstructural evolution and thermal stability Mater. Sci. Eng. A 2009 509 98 104 10.1016/j.msea.2009.01.009 

  44. 44. Murr LE Microstructural architecture, microstructures, and mechanical properties for a nickel-based superalloy fabricated by electron beam melting Metall. Mater. Trans. A 2011 42a 3491 3508 10.1007/s11661-011-0748-2 

  45. 45. Li S Microstructure characteristics of Inconel 625 superalloy manufactured by selective laser melting J. Mater. Sci. Technol. 2015 31 946 952 10.1016/j.jmst.2014.09.020 

  46. 46. Paradis PF Rhim WK Non-contact measurements of thermophysical properties of titanium at high temperature J. Chem. Thermodyn. 2000 32 123 133 10.1006/jcht.1999.0576 

  47. 47. Casas J Keita NM Steinemann SG Sound velocity in liquid titanium, vanadium and chromium Phys. Chem. Liq. 1984 14 155 158 10.1080/00319108408080806 

  48. 48. Wang G Dargusch MS Eskin DG StJohn DH Identifying the stages during ultrasonic processing that reduce the grain size of aluminum with added Al3Ti1B master alloy Adv. Eng. Mater. 2017 19 1700264 10.1002/adem.201700264 

  49. 49. Beese AM Carroll BE Review of mechanical properties of Ti-6Al-4V made by laser-based additive manufacturing using powder feedstock JOM 2016 68 724 734 10.1007/s11837-015-1759-z 

  50. 50. Lewandowski JJ Seifi M Metal additive manufacturing: a review of mechanical properties Annu. Rev. Mater. Res. 2016 46 151 186 10.1146/annurev-matsci-070115-032024 

  51. 51. Bermingham MJ McDonald SD Dargusch MS Effect of trace lanthanum hexaboride and boron additions on microstructure, tensile properties and anisotropy of Ti-6Al-4V produced by additive manufacturing Mater. Sci. Eng. A 2018 719 1 11 10.1016/j.msea.2018.02.012 

  52. 52. Mereddy S Trace carbon addition to refine microstructure and enhance properties of additive-manufactured Ti-6Al-4V JOM 2018 70 1670 1676 10.1007/s11837-018-2994-x 

  53. 53. Edwards P Ramulu M Fatigue performance evaluation of selective laser melted Ti?6Al?4V Mater. Sci. Eng. A 2014 598 327 337 10.1016/j.msea.2014.01.041 

  54. 54. Xu W Additive manufacturing of strong and ductile Ti?6Al?4V by selective laser melting via in situ martensite decomposition Acta Mater. 2015 85 74 84 10.1016/j.actamat.2014.11.028 

  55. 55. Qiu C Fabrication of large Ti?6Al?4V structures by direct laser deposition J. Alloys Compd. 2015 629 351 361 10.1016/j.jallcom.2014.12.234 

  56. 56. Xu W Lui EW Pateras A Qian M Brandt M In situ tailoring microstructure in additively manufactured Ti-6Al-4V for superior mechanical performance Acta Mater. 2017 125 390 400 10.1016/j.actamat.2016.12.027 

  57. 57. Wilson-Heid AE Wang Z McCornac B Beese AM Quantitative relationship between anisotropic strain to failure and grain morphology in additively manufactured Ti-6Al-4V Mater. Sci. Eng. A 2017 706 287 294 10.1016/j.msea.2017.09.017 

  58. 58. ASM International Handbook Committee. Properties and Selection: Nonferrous Alloys and Special-Purpose Materials.?in ASM Handbook. Vol. 2. (ASM International, Materials Park, OH, 1990). 

  59. 59. Rosenberg, Z. & Meybar, Y. Determination of changes in the sound-velocity in shock loaded Ti-6Al-4V with in-material Manganin gauges. J. Phys. D. ? 16 , L193 (1983). 

  60. 60. Wang F A refining mechanism of primary Al 3 Ti intermetallic particles by ultrasonic treatment in the liquid state Acta Mater. 2016 116 354 363 10.1016/j.actamat.2016.06.056 

  61. 61. Wang F Tzanakis I Eskin D Mi J Connolley T In situ observation of ultrasonic cavitation-induced fragmentation of the primary crystals formed in Al alloys Ultrason. Sonochem. 2017 39 66 76 10.1016/j.ultsonch.2017.03.057 28732991 

  62. 62. Wang F A synchrotron X-radiography study of the fragmentation and refinement of primary intermetallic particles in an Al-35 Cu alloy induced by ultrasonic melt processing Acta Mater. 2017 141 142 153 10.1016/j.actamat.2017.09.010 

  63. 63. Wang G Croaker P Dargusch M McGuckin D StJohn D Simulation of convective flow and thermal conditions during ultrasonic treatment of an Al-2Cu alloy Comput. Mater. Sci. 2017 134 116 125 10.1016/j.commatsci.2017.03.041 

  64. 64. Wang G The role of ultrasonically induced acoustic streaming in developing fine equiaxed grains during the solidification of an Al-2 pct Cu alloy Metall. Mater. Trans. A 2019 50 5253 5263 10.1007/s11661-019-05448-x 

  65. 65. Cui Y Xu CL Han Q Effect of ultrasonic vibration on unmixed zone formation Scr. Mater. 2006 55 975 978 10.1016/j.scriptamat.2006.08.035 

  66. 66. Bermingham MJ McDonald SD Dargusch MS StJohn DH Effect of oxygen on the β-grain size of cast titanium Mater. Sci. Forum 2010 654 1472 1475 10.4028/www.scientific.net/MSF.654-656.1472 

  67. 67. Liu Z Welsch G Effects of oxygen and heat treatment on the mechanical properties of alpha and beta titanium alloys Metall. Trans. A 1988 19 527 542 10.1007/BF02649267 

  68. 68. Vander Voort GF Metallography: Principles and Practice 1999 Materials Park, OH ASM International 

  69. 69. Schneider CA Rasband WS Eliceiri KW NIH image to ImageJ: 25 years of image analysis Nat. Methods 2012 9 671 675 10.1038/nmeth.2089 22930834 

  70. 70. Cayron C ARPGE: a computer program to automatically reconstruct the parent grains from electron backscatter diffraction data J. Appl. Crystallogr. 2007 40 1183 1188 10.1107/S0021889807048777 19461849 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로