$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 다중 문서요약에서 문장의 중복도 측정방법 개선
Measuring Improvement of Sentence-Redundancy in Multi-Document Summarization 원문보기

한국정보과학회 03 가을학술발표논문집(1), 2003 Oct., 2003년, pp.493 - 495  

임정민 (포항공과대학교 전자컴퓨터공학부 컴퓨터공학과, 첨단정보기술 연구센터) ,  강인수 (포항공과대학교 전자컴퓨터공학부 컴퓨터공학과, 첨단정보기술 연구센터) ,  배재학 (울산대학교 컴퓨터정보통신공학부) ,  이종혁 (포항공과대학교 전자컴퓨터공학부 컴퓨터공학과, 첨단정보기술 연구센터)

초록
AI-Helper 아이콘AI-Helper

다중문서요약에서는 단일문서요약과 달리 문장간의 중복도를 측정하는 방법이 요구된다. 기존에는 중복된 단어의 빈도수를 이용하거나, 구문트리 구조를 이용한 방법이 있으나, 중복도를 측정하는데 도움이 되지 못하는 단어와, 구문분석기 성능에 따라서 중복도 측정에 오류를 발생시킨다. 본 논문은 주절 종속절의 구분, 문장성분, 주절 용언의 의미를 이용하는 문장간 중복도 측정방법을 제안한다. 위의 방법으로 구현된 시스템은 기존의 중복된 단어 빈도수 방식에 비해 정확율에서 56%의 성능 향상이 있었다.

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 본 논문에서는 문장 전체에서 추출된 단어를 이용하지 않고, 문장의 의미를 나타내뇬 중요 단어를 추출, 가중치 를 부여하고. 단어들의 의미코드를 이용해서, 문장간의 중복도 측정방법을 개선하려고 한다.
본문요약 정보가 도움이 되었나요?
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로