$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

머신러닝 기반 고객 재구매 상품 예측

Prediction of Products Purchase Again Using Machine Learning.

초록

본 연구의 목적은 머신러닝 기법을 활용하여 e-commerce 시장에서 고객의 구매패턴을 파악하여 고객이 필요로 하는 상품 추천 모델을 만들고 이를 검증한다. 일반적으로 e-commerce 시장은 무분별한 정보의 제공으로 고객은 자신이 원하는 상품을 찾아 헤매야 하고 이는 기업들의 고객유지를 저해하여 기업 손실로 이어진다. 따라서 본 논문에서는 결정트리(Decision Tree)에 boosting 기법을 활용하여 고객의 주문내역과 상품정보 등을 분석하여 특징을 추출한 후 사용자에게 상품을 추천하는 모델을 만들어 검증한다. 그 결과 f1 score가 0.3792를 나타내었고 이는 고객이 다음에 구매하려는 목록의 30% 이상을 예측하는 결과이며 이는 기업이 고객에게 필요한 상품정보를 제공해주는 서비스임을 확인할 수 있었다.

저자의 다른 논문

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

  • 원문 URL 링크 정보가 존재하지 않습니다.

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. 원문복사서비스 안내 바로 가기

상세조회 0건 원문조회 0건

DOI 인용 스타일

"" 핵심어 질의응답