$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

컨텐츠 선호도 정보를 이용한 딥러닝 기반의 하이브리드 추천 시스템

A Hybrid Recommender System based on Deep Learning using Contents Preference

초록

본 논문에서는 사용자의 상품에 대한 평점 정보와 상품의 컨텐츠 정보를 모두 이용하는 하이브리드 추천 모델에 대해서 논의한다. 기존 논문들과는 다르게, 본 논문은 추천의 정확도를 높이기 위해 사용자가 상품의 컨텐츠 (예를 들면, 영화의 장르 또는 상품의 카테고리 등) 에 가질 수 있는 선호도를 예측하고, 이를 추가적으로 활용할 수 있는 딥러닝 기반의 추천 모델을 제안한다. 실세계의 데이터를 이용해서 제안하는 방법의 우수성을 보인다.

저자의 다른 논문

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

  • 원문 URL 링크 정보가 존재하지 않습니다.

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. 원문복사서비스 안내 바로 가기

상세조회 0건 원문조회 0건

DOI 인용 스타일