$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

에너지 생산형 하수처리장을 위한 가용 기술과 통합관리 방안
Available Technology and Integrated Management Plan for Energy-positive in the Sewage Treatment Plant 원문보기

한국물환경학회지 = Journal of Korean Society on Water Environment, v.36 no.1, 2020년, pp.55 - 68  

송민수 (부산대학교 사회환경시스템공학과) ,  김형호 (부산환경공단) ,  배효관 (부산대학교 사회환경시스템공학과)

Abstract AI-Helper 아이콘AI-Helper

Because of the intensified environmental problems such as climate change and resource depletion, sewage treatment technology focused on energy management has recently attracted attention. The conversion of primary sludge from the primary sedimentation tank and excessive sludge from the secondary sed...

주제어

표/그림 (13)

질의응답

핵심어 질문 논문에서 추출한 답변
하수도란? 하수도는 인간 생활에서 사용된 하수와 분뇨, 우수를 처리하기 위해 설치되는 하수관로, 공공 하수처리시설, 하수저류 시설 등을 지칭한다. 하수도가 도입되어 우수를 배제하고 방류 분뇨를 처리하면서 인간은 수인성 질병의 근원을 예방하 고 인간다운 삶을 영위할 수 있게 되었다.
우리나라는 1966년 하수도법이 제정되어 단기간에 하수도의 발전을 이루어 내었지만 아직 미흡한 부분은? 2 %에 이른다(ME, 2018a). 그러나 종래의 하수도 사업은 시설 확충과 처리 효율을 높이기 위한 기술 도입에 집중하였으며 에너지 효율성에 대한 고려는 미흡하였다. 현재는 지구 온난화로 인한 기후변화, 자원 고갈 등 환경문제가 가속화되면서 국가적 측면에서의 에너지 대책 마련이 이슈로 제기되고 있는 상황이다.
하수도가 도입되어 생긴 장점은? 하수도는 인간 생활에서 사용된 하수와 분뇨, 우수를 처리하기 위해 설치되는 하수관로, 공공 하수처리시설, 하수저류 시설 등을 지칭한다. 하수도가 도입되어 우수를 배제하고 방류 분뇨를 처리하면서 인간은 수인성 질병의 근원을 예방하 고 인간다운 삶을 영위할 수 있게 되었다. 우리나라는 1966년 하수도법이 제정되어 단기간에 하수도의 발전을 이루어 내었 다.
질의응답 정보가 도움이 되었나요?

참고문헌 (59)

  1. An, H, L., Song, J, K., Kim, C, M., Sung, J, I., and Kwon, Y, H. (2002). Co-generation system using the bio-gas of sewage plant, Journal of The Korean Institute of Plant Engineering, 105-112. [Korea Literature] 

  2. Angelidaki, I., and Ahring, B. K. (1994). Anaerobic thermophilic digestion of manure at different ammonia loads: effect of temperature, Water Research, 28(3), 727-731. 

  3. Angelidaki, I. and Sanders, W. (2004). Assessment of the anaerobic biodegradability of macropollutants, Reviews in Environmental Science & Bio/Technology, 3(2), 117-129. 

  4. Bae, H. K. (2018). Recovering the energy potential of sewage as approach to energy self-sufficient sewage treatment, Journal of Korean Society on Water Environment, 34(1), 121-131. [Korea Literature] 

  5. Bae, M. S., Lee, J. Y., and Lee, J. G. (2016). Process technologies of reforming, upgrading and purification of anaerobic gas for fuel cells, Transactions of the Korean Hydrogen and New Energy Society, 27(2), 135-143. [Korea Literature] 

  6. Baek, S. K. (2018). Energy saving and independence of sewage treatment facilities-major policy seminars in Busan, Busan City, http://www.busan.go.kr/nbtnews/1336632. [Korea Literature] 

  7. Bai, M. D., Cheng, S. S., and Chao, Y. C. (2004). Effects of substrate components on hydrogen fermentation of multiple substrates, Water Science and Technology, 50(8), 209-216. 

  8. Bohnke, B. (1977). Das Adsorptions-Belebungsverfahren, Korrespondenz Abwasser, 24, 121-127. [German Literature] 

  9. Cho, E, S. (2011). A study on the improvement of energy management for wastewater utilities, Korea Environment Institute, 2011-18. [Korea Literature] 

  10. Cho, I. H., Ko, I. B., and Kim, J. T. (2014). Technology trend on the increase of biogas production and sludge reduction in wastewater treatment plants: sludge pre-treatment techniques, Korean Chemical Engineering Research., 52(4), 413-424. [Korea Literature] 

  11. Cho, S. H. (2016). Strategies for the improvement of energy efficiency and energy self-reliance in public sewage treatment facilities in Gwangju, Gwangju Jeonnam Research Institute 2016-23. [Korean Literature] 

  12. Choi, G. H., Kim, T. H., Lee, M. A., Park, W. C., Cho, G. Y., and Park, J. C. (2008). The Effects of ammonia based on the long-term anaerobic digestion for food waste, Journal of Korean Society of Environmental Technology, 9(4), 264-269. [Korea Literature] 

  13. Chudoba, J., Grau, P., and Ottova, V. (1973). Control of activated-sludge filamentous bulking - Selection of microorganisms by means of a selector, Water Research, 7(10), 1389-1398. 

  14. Daigger, G. T. and Grady, Jr. C. L. (1982). The dynamics of microbial growth on soluble substrates: a unifying theory, Water Research, 16(4), 365-382. 

  15. Delgado, K., Maier, L., Tischer, S., Zellner, A., Stotz, H., and Deutschmann, O. (2015). Surface reaction kinetics of steam-and $CO_2$ -reforming as well as oxidation of methane over nickel-based catalysts, Catalysts, 5(2), 871-904. 

  16. Dong, L., Zhenhong, Y., Yongming, S., Xiaoying, K., and Yu, Z., (2009). Hydrogen production characteristics of the organic fraction of municipal solid wastes by anaerobic mixed culture fermentation, International Journal of Hydrogen Energy, 34(2), 812-820. 

  17. Erden, G. and Filibeli, A. (2010). Ultrasonic pre-treatment of biological sludge: consequences for disintegration, anaerobic biodegradability, and filterability, Journal of Chemical Technology & Biotechnology, 85(1), 145-150. 

  18. Evans, T. D. (2003). Independant review of retrofitting CAMBI to MAD, Proceedings of the Water Environment Federation, Water Environment Federation, 2003(1), 1390-1400. 

  19. Gavala, H. N., Yenal, U., Skiadas, I. V., Westermann, P., and Ahring, B. K. (2003). Mesophilic and thermophilic anaerobic digestion of primary and secondary sludge. Effect of pre-treatment at elevated temperature, Water Research, 37(19), 4561-4572. 

  20. Goel, R., Tokutomi, T., Yasui, H., and Noike, T. (2003). Optimal process configuration for anaerobic digestion with ozonation, Water Science and Technology, 48(4), 85-96. 

  21. Gude, V. G. (2015). Energy positive wastewater treatment and sludge management, Edorium Journal of Waste Management, 1, 10-15. 

  22. Guven, H., Dereli, R. K., Ozgun, H., Ersahin, M. E., and Ozturk, I. (2019). Towards sustainable and energy efficient municipal wastewater treatment by up-concentration of organics, Progress in Energy and Combustion Science, 70, 145-168. 

  23. Haga, K., Adachi, S., Shiratori, Y., Itoh, K., and Sasaki, K. (2008). Poisoning of SOFC anodes by various fuel impurities, Solid State Ionics, 179(27-32), 1427-1431. 

  24. Han, Y. H. (2010). Scheme of energy independence for sewage treatment facilities in gangwon province, Research Institute for Gangwon, 10-33. [Korea Literature] 

  25. Haug, R. T., Stuckey, D. C., Gossett, J. M., and McCarty, P. L. (1978). Effect of thermal pretreatment on digestibility and dewaterability of organic sludges, Journal Water Pollution Control Federation, 73-85. 

  26. Kim, D. J. (2013). Pre-treatment technology of wastewater sludge for enhanced biogas production in anaerobic digestion, Clean Technology, 19(4), 355-369. [Korea Literature] 

  27. Kobayashi, T., Xu, K. Q., Li, Y. Y., and Inamori, Y. (2012). Evaluation of hydrogen and methane production from municipal solid wastes with different compositions of fat, protein, cellulosic materials and the other carbohydrates, International Journal of Hydrogen Energy, 37(20), 15711-15718. 

  28. Lee, D. G, Bae, J. S., Son, J. I., Kang, J. G., Jeon, T. W., and Shin, S. K. (2016). A study on optimization of operation in the biogas production facility of organic waste (III), National Institute of Environmental Research, NIERPR2016-398. [Korea Literature] 

  29. Lee, J, G., Jun, J, H., Park, K, H., Chol, D, S., and Park, J, Y. (2007). Anaerobic digester gas purification for the fuel gas of the fuel cell, Transactions of the Korean Hydrogen and New Energy Society, 18(2), 164-170. [Korea Literature] 

  30. Lee, J. W., Cha, H. Y., Park, K. Y., Song, K. G., and Ahn, K. H. (2005). Operational strategies for an activated sludge process in conjunction with ozone oxidation for zero excess sludge production during winter season, Water Research, 39(7), 1199-1204. 

  31. Levlin, E. (2010). Maximizing sludge and biogas production for counteracting global warming, In International scientific seminar, Research and application of new technologies in wastewater treatment and municipal solid waste diposal in Ukraine, 95-104. 

  32. Li, Y. and Noike, T. (1992). Upgrading of anaerobic digestion of waste activated sludge by thermal pretreatment, Water Science and Technology, 26(3-4), 857-866. 

  33. Lim, K. C. (2007). A study on the progress of energy management system of major countries and domestic introduction plan, Korea Energy Economics Institute, 07-04. [Korea Literature] 

  34. McCarty, P. L. and McKinney, R. E. (1961). Salt toxicity in anaerobic digestion, Journal Water Pollution Control Federation, 33(4), 399-415. 

  35. Meerburg, F. A., Boon, N., Winckel, T. V., Vercamer, J. A. R., Nopens, I., and Vlaeminck, S. E. (2015). Toward energy-neutral wastewater treatment: A high-rate contact stabilization process to maximally recover sewage organics, Bioresource Technology, 179, 373-381. 

  36. Ministry of Environment (ME). (2010). Basic Plan for Energy Independence, Ministry of Environment. [Korea Literature] 

  37. Ministry of Environment (ME). (2015a). Fundamental Study for the Operational Management of Livestock Manure Bioenergy Facility, Ministry of Environment. [Korea Literature] 

  38. Ministry of Environment (ME). (2015b). Technical guidelines of Food Waste Biogasification Facility, 11-1480000-001416-01, Ministry of Environment. [Korea Literature] 

  39. Ministry of Environment (ME). (2018a). 2016 Statistics of Sewerage, Ministry of Environment. [Korea Literature] 

  40. Ministry of Environment (ME). (2018b). Policy direction of energy Independence in public sewage treatment plant, Ministry of Environment. [Korea Literature] 

  41. Observ'ER. (2018). The state of renewable energies in europe, Edition 2017, 17th EurObserv'ER Report. 

  42. Oh, J. H. (2015). Seoul Government building acquired ISO 50001 certification for the first time in a national institution, Ministry of the Interior and Safety. [Korea Literature] 

  43. Park, H. C., Kim, S. J., Jang, B, Y., Oh, Y. K., Park C. H. Shin, D. H., and Huh, K. Y. (2013). A Study on Operation Characteristics of Anaerobic Digestion by Nitrogen Loading Rate using Food Waste Water, Journal of the Korean Society of Urban Environment, 13(3), 209-215. [Korea Literature] 

  44. Park, S. Y., Park, J. H., Na, H. S., and Kim, M. I. (2012). Estimation of influening factors for efficient anaerobic digestion of high strength ammonia-nitrogen wastewater, Journal of Korean Society of Water and Wastewater, 26(5), 649-658. [Korea Literature] 

  45. Parker, D. S., Barnard, J., Daigger, G. T., and J, E. (2001). The Future of Chemically Enhanced Primary Treatment: Evolution Not Revolution, WATER 21, 49-56. 

  46. Poggi-Varaldo, H. M., Rodriguez-Vazquez, R., Fernandez-Villagomez, G., and Esparza-Garcia, F. (1997). Inhibition of mesophilic solid-substrate anaerobic digestion by ammonia nitrogen, Applied Microbiology and Biotechnology, 47(3), 284-291. 

  47. Rahman, A., Clippeleir, H. D., Thomas, W., Jimenez, J. A., Wett, B., Omari, A. O., Murthy, S., Riffat, R., and Bott, C. (2019). A-stage and high-rate contact-stabilization performance comparison for carbon and nutrient redirection from high-strength municipal wastewater, Chemical Engineering Journal, 357, 737-749. 

  48. Sarah, G. and Michael, M. (2015). Energy efficiency and recovery opportunities analysis for municipal wastewater treatment plant operations, Proceedings of the Water Environment Federation, Water Environment Federation, 2015(2), 1-9. 

  49. Sim, J. P. (2008). A technology development trend of Polymer electrolyte fuel cell (PEMFC & DMFC), The Magazine of the The Institute of Electronics and Information Engineers, 35(6), 71-81. [Korea Literature] 

  50. Show, K. Y., Mao, T., and Lee, D. J. (2007). Optimisation of sludge disruption by sonication, Water Research, 41(20), 4741-4747. 

  51. Soares, R. B., Memelli, M. S., Roque, R. P., and Goncalves, R. F. (2017). Comparative analysis of the energy consumption of different wastewater treatment plants, International Journal of Architecture, Arts and Applications, 3(6), 79-86. 

  52. Song, G. S. (2016). Technology development trend small-scale cogeneration, Korea Environmental Industry & Technology Institute, 2016-076. [Korea Literature] 

  53. Stillwell, A., Hoppock, D, and Webber, M. (2010). Energy recovery from wastewater treatment plants in the United States: a case study of the energy-water nexus, Sustainability, 2(4), 945-962. 

  54. Wan, J., Gu, J., Zhao, Q., and Liu, Y. (2016). COD capture: a feasible option towards energy self-sufficient domestic wastewater treatment, Scientific Reports, 6, 25054. 

  55. Weemaes, M., Grootaerd, H., Simoens, F., and Verstraete, W. (2000). Anaerobic digestion of ozonized biosolids, Water Research, 34(8), 2330-2336. 

  56. Yeo, K. H. (2016). Technology trend of organic waste energy, Konetic report, 2016-074. [Korea Literature] 

  57. Yeom, I. T., Lee, K. R., Lee, Y. H., Ahn, K. H., and Lee, S.H. (2002). Effects of ozone treatment on the biodegradability of sludge from municipal wastewater treatment plants, Water Science and Technology, 46(4-5), 421-425. 

  58. Yousuf, A., Rahman, K., Pirozzi, D., Wahid, Z. A., and Atnaw, M. (2017). Economic and market value of biogas technology, Waste Biomass Management-A Holistic Approach, Springer, Cham, 137-158. 

  59. Yu, M, J. (2011). Trend of potential assessment and utilization technology for sewage treatment plant energy-resource, Seoul Development Institute, 2011-WP-13. 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로