$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

지능형 최단 경로, 최소 꺾임 경로 및 혼합형 최단 경로 찾기

Finding Rectilinear(L1), Link Metric, and Combined Shortest Paths with an Intelligent Search Method

초록

이 논문은 새로운 휴리스틱 탐색(heuristic search)방법을 이용하여, 수평 및 수 직선으로 이루어진 방해 물들이 놓인 가운데 수평 및 수직선으로 구성된 최단 거리 (rectilinear shortestpath)와 꺾이는회수가 가장 적은최소 꺾임경로(link metric shortest path) 및 이 둘을 혼합시킨 혼합형 최단 경로를 구하는 알고리즘을 서술 하고 있다. 최단 경로를 구하는 방법으로 미로 찾기형 알고리즘(maze-running algorithms)과 선형 탐색 알고리즘(line-search algorithms)의 장점만을 이용한 GMD 알고리즘(Guided Minimum Detour algorithm)을 제안하고 있으며 이를 더욱 효율 적으 로 개선한 LGMD 알고리즘 (Line-by-Line Guided Minimum Detour algorithmm)을 개발 하였다. 이들 GMD와 LGMD 알고리즘은 기존의 최단 경로를 내포하고 있는 conection group를 이용하지 않고서도 휴리스틱을 사용한 guided A 탐색(guided A* search)을 이용하여 최적의 최단 경로를 구할 수 있는 장점이 있으며 시간과 메모리 면에서 효 율을 극대화하였다. 이들 GMD와 LGMD 알고리즘은 각각 O(m+eloge+NlogN)와 O(eloge+ NlogN)의 시간과 O(e+N)의 메모리를 사용한다. 여기서 m은 탐색에 사용된 지선 (line segment)들의 수이다. 또한 LGMD는 최소 꺾임 경로(link metric shortest path)와 최단 경로와 최소의 꺾임을 조합한 혼합형 최단 경로를 구하는 데에도 적용될 수 있는 확장성을 가지고 있다.

Abstract

This paper presents new heuristic search algorithms for searching rectilinear r(L1), link metric, and combined shortest paths in the presence of orthogonal obstacles. The GMD(GuidedMinimum Detour) algorithm combines the best features of maze-running algorithms and line-search algorithms. The SGMD(Line-by-Line GuidedMinimum Detour)algorithm is a modiffication of the GMD algorithm that improves efficiency using line-by-line extensions. Our GMD and LGMD algorithms always find a rectilinear shortest path using the guided A search method without constructing a connection graph that contains a shortest path. The GMD and the LGMD algorithms can be implemented in O(m+eloge+NlogN) and O(eloge+NlogN) time, respectively, and O(e+N) space, where m is the total number of searched nodes, is the number of boundary sides of obstacles, and N is the total number of searched line segment. Based on the LGMD algorithm, we consider not only the problems of finding a link metric shortest path in terms of the number of bends, but also the combined L1 metric and Link Metric shortest path in terms of the length and the number of bands.

저자의 다른 논문

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일