$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

학생의 논변활동을 강조한 개방적 과학탐구활동 모형의 탐색
The Exploration of Open Scientific Inquiry Model Emphasizing Students' Argumentation 원문보기

한국과학교육학회지 = Journal of the Korean association for science education, v.24 no.6, 2004년, pp.1216 - 1234  

김희경 (원묵중학교) ,  송진웅 (서울대학교)

초록
AI-Helper 아이콘AI-Helper

전통적인 학교 과학 실험은 실제 과학 활동, 즉 참과학 탐구의 특징을 적절히 반영하고 있지 못하며, 특히 토론이나 논변적 실제가 부족하다는 비판이 제기되고 있다. 이에, 본 논문의 목적은 학생들의 동료간 논변활동을 강조한 개방적 탐구 활동을 제안하기 위해, 그 조건 및 특징을 알아보고 적절한 모형을 제안하는 것이다. 문헌 분석 및 이론적 논의를 바탕으로, 학생들의 논변활동을 촉진시키기 위해서 논변적 과학탐구 활동이 가져야 할 조건에 대하여 살펴 본 결과, 인지적 측면에서는 '다양한 견해가 가능한 문제 상황', '학생 자신의 주장 펼치기', '효과적으로 조직된 논변 구성의 기회'가 필요하며, 사회적 측면에서는 '수펑적 관계', '경쟁과 협력의 공동체 활동'이 필요한 것으로 분석되었다. 이러한 조건을 만족시키기 위해 논변적 과학 탐구 활동은 실험활동과 논변활동으로 구성되며 논변활동은 동료 검토용 보고서 쓰기와 비판적 토론으로 조직되었다. 논변활동은 조 내부와 조 별간에, 그리고 쓰기와 토론을 통해서 반복적으로 이루어지며 되먹임을 통해 실험활동과 연계되어 있으며 전체 탐구 과정은 순환적인 특징을 갖는다.

Abstract AI-Helper 아이콘AI-Helper

School science practical work is often criticized as lacking key elements of authentic science, such as peer argumentation or debate through which social consensus is obtained. The purpose of this paper is to review the recent studies about the argumentation and to explore the conditions and the mod...

주제어

참고문헌 (77)

  1. 강태완, 김태용, 이상철, 허경호(2001). 토론의 방법. 서울:커뮤니케이션북스 

  2. 김희경, 강태욱, 송진웅(2003). 7차 교육과정에 따른 중학교 과학 교과서 물리단원 실험의 특징. 새물리, 47(6), 387-394 

  3. 민병곤(2000). 신문사설의 논증 구조 분석. 국어국문학, 127, 133-154 

  4. 민병곤(2001), 논증 이론의 현황과 국어 교육의 과제. 국어교육학연구, 12(1), 237-285 

  5. 연세대학교 언어정보개발연구원(2002). 연세 한국어사전. 서울: 두산동아 

  6. 이범홍(1998). 토의토론 학습과 중등학교 과학교육. 1997년도 교과교육공동연구 결과 보고서(RR 97-II-6). 서울: 한국학술진흥재단 

  7. 이선영(2002). 토론의 논증 구성과 사회적 상호작용에 관한 연구. 서울대학교 석사 학위 논문 

  8. 한국물리교육연구센터(1994). 과학 공동탐구 토론대회 보고서. 서울: 관악사 

  9. Alexopoulou, E. & Driver, R. (1996). Small group discussions in physics: peer interaction modes in pairs and fours. Journal of Research in Science Teaching, 33(10), 1099-1114 

  10. Alexopoulou, E. & Driver, R. (1997). Gender differences in small group discussions in physics. International Journal of Science Education, 19(4), 393-406 

  11. Bell, P. & Linn. M. C. (2000). Scientific arguments as learning artifacts: designing for learning from the web with KIE, International Journal of Science Education, 22(8), 797-817 

  12. Berry, A., Mulhall, P., Loughran, J. J., & Gunstone, R. F. (1999). Helping students learn from laboratory work. Australian Science Teachers' Journal, 45(1), 27-31 

  13. Boulter, C. J. & Gilbert, J. K. (1995). Argument and science education. In P. S. M. Costello & S. Mitchell (Eds.), Competing and consensual voices: The theory and practice of argumentation. Clevedon, UK: Multilingual Matters 

  14. Chinn, C. A. & Brewer, W. F. (1993). The role of anomalous data in knowledge acquisition: A theoretical framework and implications for science instruction. Review of Educational Research, 63(1), 1-49 

  15. Chinn, C. A. & Brewer, W. F. (1998). An empirical test of a taxonomy of responses to anomalous data in science. Journal of Research in Science Teaching, 35(6), 623-654 

  16. Chinn, C. A. & Malhotra, B. A. (2002). Epistemologically authentic inquiry in schools: A theoretical framework for evaluating inquiry tasks. Science Education, 86(2), 175-218 

  17. Collette, A. T. & Chiappetta, E. L. (1989). Science instruction in the middle and secondary schools. Columbus, OH: Merrill Pub. Co 

  18. Cunningham, C. M. & Helms, J. V. (1998). Sociology of science as a means to a more authentic, inclusive Science Education. Journal of Research in Science Teaching, 35(5), 483-499 

  19. Deci, E. L. (1975). Intrinsic motivation. New York, NY: Plenum 

  20. Dillon, J. T. (1994). Using discussion in classroom. Buckingham, UK: Open University Press 

  21. Driver, R. (1983). The Pupil as Scientist? Milton Keynes: The Open University Press 

  22. Driver, R. (1989). The Construction of Scientific Knowledge in School Classrooms. In R. Millar (Ed.), Doing Science: Images of Science in Science Education (pp. 83-105). NY: The Falmer Press 

  23. Driver, R. & Scott, P. H. (1996). Curriculum Development as Research: A Constructivist Approach to Science Curriculum Development and Teaching. In D. F. Treagust, R. Duit, & B. J.Fraser (Eds.), Improving Teaching and Learning in Science and Mathematics (pp. 83-106). NY: Teachers College Press 

  24. Driver, R., Newton, P., & Osborn, J. (2000). Establishing the Norms of Scientific Argumentation in Classrooms. Science Education, 84(3), 287-312 

  25. Duggan, S. & Gott, R. (2002). What sort of science education do we really need? International Journal of Science Education, 24(7), 661-679 

  26. Dunbar, K. (1995). How scientists really reason: Scientific reasoning in real-world laboratories. In R. J. Sternberg & J. E. Davidson (Eds.), Mechanisms of insight (pp. 365-395). Cambridge, MA: MIT Press 

  27. Duschl, R. A., Ellenbogen, K., & Erduran, S. (1999, March). Promoting argumentation in middle school science students. Paper presented at the annual meeting of the National Association for Research in Science Teaching (NARST), Boston, MA 

  28. Fuller, S. (1997). Science. Buckingham, UK: Open University Press 

  29. Gott, R. & Duggan, S. (1995). Investigative work in the science cuniculum. Buckingham, UK: Open University Press 

  30. Hackling, M. W. & Fairbrother, R. W. (1996). Helping students to do open investigation in science. Australian Science Teachers Journal, 42(4), 26-33 

  31. Heisenberg, W. (1982). 부분과 전체 (김용준, 역). 서울: 지식산업사. (원저 1969 발행) 

  32. Hodson, D. (1993). Rethinking old ways: towards a more critical approach to practical work in school science. Studies in Science Education, 22, 85-142 

  33. Hodson, D. (1998). Is this really what scientists do? Seeking a more authentic science in and beyond the school laboratory. In J. J. Wellington (Ed.), Practical Work in School Science (pp. 93-108). NY: Routledge 

  34. Hodson, D. & Bencze, L. (1998). Becoming critical about pratical about practical work: changing views and changing practice through action research. International Journal of Science Education, 20(6), 683-694 

  35. Hofstein, A. & Lunetta, V. N. (2004). The laboratory in Science Education: Foundations for the twenty-first century. Science Education, 88(1), 28-54 

  36. Inch, E. S. & Warnick, B. (2002). Critical thinking and communication: the use of reason in argument. Boston, MA: Allyn and Bacon 

  37. Jimenez-Aleixandre, M. P., Bugallo-Rodriguez, A. & Duschl, R. (2000). 'Doing the lesson' or 'doing science': argument in high school genetics. Science Education, 84(6), 757-792 

  38. Jimenez-Aleixandre, M. P., Agroso, M., & Birexas, F. (2004, April). Scientific Authority and Empirical Data in Argument Warrants about the Prestige Oil Spill. Paper presented at the annual meeting of the National Association for Research in Science Teaching, Vancouver, Canada 

  39. Johnson, R. H. (2000). Manifest rationality: a pragmatic theory of argument. Mahwah, NJ: Lawrence Erlbaum Associates 

  40. Kelly, G. J., Drucker, S., & Chen, K. (1998). Students' reasoning about electricity: combining performance assessment with argumentation analysis. International Journal of Science Education, 20(7), 849-871 

  41. Kelly G. J. & Hilton-Brown, B. (2001, March). Discourse studies of science education: a review of the literature. Paper presented at the annual meeting of the National Association for Research in Science Teaching, St. Louis, MO. 

  42. Kelly, G. J. & Talmo, A. (2002). Epistemic levels in argument: An analysis of university oceanography students' use of evidence in writing. Science Education, 86(3), 314- 342 

  43. Krummheuer, G. (1995). The ethnography of argumentation. In P. Cobb & H. Bauersfeld(Eds.), Emergence of Mathematical Meaning. Hillsdale, NJ: Lawrence Erlbaum 

  44. Kuhn, D. (1992). Thinking as argument. Harvard Educational Review, 62(2), 155-178 

  45. Kuhn, D. (1993). Science argument: Implications for teaching and learning scientific thinking. Science Education, 77(3), 319-337 

  46. Kuhn, D., Shaw, V., & Felton, M. (1997). Effects of dyadic interaction on argumentative reasoning. Cognition and Instruction, 15(3), 287-315 

  47. Latour, B., & Woolgar, S. (1986). Laboratory life: The construction of scientific facts. Princeton, NJ: Princeton University Press 

  48. Lemke, J. L. (1990). Talking Science: Language, Learning, and Values. Norwood, NJ: Ablex 

  49. Lepper, M. R. & Hodell, M. (1989). Intrinsic motivation in the classroom. In C. Ames & R. E. Ames(Eds.), Research on Motivation in Education: Goals and Cognitions (VoI.3, pp. 73-105). Orlando, FL: Academic Press 

  50. Millar, R. H. (1989). What scientific method and can it be taught? In J. Wellington (Ed.), Skills and processes in Science Education: A critical analysis. London: Routledge 

  51. Millar, R. H. (1998). Rhetoric and reality: What practical work in Science Education is really for. In J. J. Wellington (Ed.), Practical work in school science (pp 16-31). NY: Routledge 

  52. National Research Council. (1996). National Science Education Standards. Washington, DC: National Academy Press 

  53. Newton, P., Driver, R, & Osborne, J. (1999). The place of argumentation in the pedagogy of school science, International Journal of Science Education, 21(5), 553-576 

  54. Niaz, M., Aguilera, D., Maza, A., & Liendo, G. (2002). Arguments, contradictions, resistances, and conceptual change in students' understanding of atomic structure. Science Education, 86(4), 505-525 

  55. Pera, M. (1994). The Discourses of Science (C. Botsford, Trans.). Chicago: The University of Chicago Press 

  56. Rigano, D. L. & Ritchie, S. M. (1995). Student disclosure of fraudulent practice in school laboratories. Research in Science Education, 25(4), 353-363 

  57. Roberts, R. and Gatt, R. (2002). Investigations: collecting and using evidence. In D. Sang, and V. Wood-Robinson (Eds.), Teaching secondary scientific enquiry (pp 18-49). London: John Murray 

  58. Rogers, E. M. (1948). Science in general education. In E. J. McGrath (Ed.), Science in general education. Dubuque, IA: William C. Brown Publishers 

  59. Roth, W. M. (1995). Authentic School Science. Boston, MA: Kluwer Academic Publishers 

  60. Russell, T. L. (1983). Analyzing arguments in science classroom discourse: Can teachers' questions distort scientific authority? Journal of Research in Science Teaching, 20(1), 27-45 

  61. Simon, S., Erduran, S., & Osborne, J. (2002, April). Enhancing the quality of argumentation in school science. Paper presented at the annual meeting of the National Association for Research in Science Teaching, New Orleans, Louisiana 

  62. Surral, C. S., Sunal, D. W., Tirri, K. (2001, April). Using evidence in scientific reasoning: Exploring characteristics of middle school students' argumentation. Paper presented at the annual meeting of the American Educational Research Association, Seattle, WA 

  63. Suppe, F. (1998). The structure of a scientific paper. Philosophy of Science, 65(3), 381-405 

  64. Sutton, C. R. (1992). Words, Science and Learning. Developing Science and Technology Series. Buckingham, UK: Open University Press 

  65. Taylor, C. (1996). Deiining science. Madison, WI: University of Wisconsin Press 

  66. Toulmin, S. E. (1958). The Uses of Argument. Cambridge, UK.: C.U.P. 

  67. van Eemeren, F. H., Grootendorst, R., Henkemans, F. S., Blair, J. A., Johnson, R. H., Krabbe, E. C. W., Plantin, C., Walton, D. N., Willard, C. A., Woods, J., & Zarefsky, D. (1996). Fundamentals of argumentation theory: a handbook of historical backgrounds and contemporary developments. Mahwah, NJ: Lawrence Erlbaum Associates 

  68. van Zee, E. H. (2000). Analysis of a studentgenerated inquiry discussion. International Journal of Science Education, 22(2), 115-142 

  69. Vygotsky, L. (1978). Thought and language. Cambridge, MA: MIT Press 

  70. Walton, D. N. (1996). Argumentation schemes for presumptive reasoning. NJ: LEA 

  71. Watson, J. R. (2000). The role of practical work. In M. Monk & J. Osborne (Eds.), Good practice in science teaching: what research has to say (pp.57-71). Buckingham, UK: Open University Press 

  72. Watson, J.R., Swain, J.R.L, & McRobbie, C. (2004) Students' discussions in practical scientific inquiries. International Journal of Science Education, 26(1), 25-45 

  73. Wellington, J. J. (1998). Practical work in science: time for a reappraisal. In J. J. Wellington (Ed.), Practical work in school science (pp. 3-15). NY: Routledge 

  74. Wellington, J. J. & Osborne, J. (2001). Language and literacy in science education. Buckingham, UK: Open University Press 

  75. Yore, L. D., Hand, B. M., & Florence, M., K. (2004). Scientists' views of science, models of writing, and science writing practices. Journal of Research in Science Teaching, 41(4), 338-369 

  76. Zembal-Saul, C., Munford, D., Crawford, B., Friedrichsen, P., & Land, S. (2002). Scaffolding preservice science teachers' evidence-based arguments during an investigation of natural selection. Research in Science Education, 32(4), 437-463 

  77. Zeidler, D. L. (1997). The central role of fallacious thinking in science education. Science Education, 81(4), 483-496 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로