$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 어류치사성 Cochlodinium polykrikoides 적조생물의 유전적 진화 및 특성
Genetic Evolution and Characteristics of Ichthyotoxic Cochlodinium polykrikoides(Gymnodiniales, Dinophyceae) 원문보기

생명과학회지 = Journal of life science, v.17 no.11 = no.91, 2007년, pp.1453 - 1463  

조은섭 (국립수산과학원 남해수산연구소) ,  정창수 (국립수산과학원 남해수산연구소)

초록
AI-Helper 아이콘AI-Helper

본 연구는 유해성 적조생물인 Cochlodinium polykrikoides의 유전적 계통진화를 설명하기 위하여 24 종의 개체에 대한 SSU을 대상으로 분석했다. C. polykrikoides는 와편모조류와 밀접한 단일 계통군을 형성하고 있다. Neighbor-joining 혹은 parsimony 분석에 의하면 C. polykrikoides는 Gymnodiniales 보다 Prorocentrals 목 (order)에 훨씬 근접한 100% 유연관계를 보이고 있으며, 과 (family)로 분석해 보면 Gymnodiniaceae에 속해 있고, 특히 Prorocentrum micans와는 매우 밀접한 관계를 보이고 있다. 형태적으로는 Gyrodinium속 (genus)에 가깝지만, 유전적으로는 Gymnodinium 속에 근접하고 있다. C. polykrikoides는 와편모조류 중에서 독립적인 계통군을 유지하고 있다. 따라서 p. micans는 Gymnodinium의 조상으로 추측되며, C. polykrikoides는 P. micans와 Gymnodinium 속의 중간단계인 것으로 보인다.

Abstract AI-Helper 아이콘AI-Helper

This study presents a molecular phylogenetic analysis of the harmful dinoflagellate Cochlodinium polykrikoides, by use of partial sequence of small subunit (SSU) rRNA gene from most of the major taxa(24 species) in dinoflagellates. The class Dinophyceae clade formed a strong monophyletic relationshi...

Keyword

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • SSU has proven to be useful for the study of intra and inter-specific genetic variation in Dinophyceae. Here, we sequenced SSU to investigate phylogenetic relationships, and the evolutionary process by undertaking a detailed examination of the mixotrophic C. polykrikoides to establish its association with related species. We also obtained other sequences through GenBank search to form a combined data set.
  • micans in close relationship to Gymnodiniales (bootstrap >90% in NJ and parsimony analyses, Fig 5a). To better illustrate the relationships within this group, we performed a branch and bound search on a broad data set consisting of P. balticum, P. trietinum, and P. minimum retrieved from the GenBank database. The resulting phylogenetic tTee was shown in Fig.
  • Amplification product obtained with the primers NS1 (forward) and NS2 (reverse) for Nannochloropsis salina EUS-001. 100 bp DNA ladder was used as molecular size marker in this study.

대상 데이터

  • Cochlodinium polykrikoides was collected from red tide waters in Korea, 2004. A total of 24 species were provided from Korea Marine Microalgae Culture, Pukyong University in Busan.
  • 5c [13] as a subprogram NEIGHBOR. PHYLIP was used dinoflagellates such as Protoperidinium thulesense AB261522, Noctiluca scintillans DQ388461, Gyrodinium aureolum D-97z Dinopkysis acuminate AJ506972, D. fortii AB073118, D. norvegica AY260470, Prorocentrum lima AB189780, P. minimum AJ415520, P. triestinum AB183673, Gambierdiscus toxicus DQ388463, Alexnadrium tamarense AJ415510, A. ostenfeldii AJ535384, Coolia monotis AJ415509z Ostreopsis ovata AF244939, Ceratium furca AJ276699, C. fusus AF022153, Gonyalulax polygramma AJ833631, Gymnodiniwm mikimotoi AF022195, Karena brevis AF352822, Pfiesteria shumwaye AF080093, P. piscicida AY033488, Gymnodinium fuscum AF022194, G. galatheanum AF272049, Gyrodinium spirals AB120001, Scrippsiella trochoidea AJ415515, Takayanui pulchellum AY800130, Akashiwo sanguinea AJ415513. This search for parsimony analysis was repeated several times from different random starting points using the stepwise addition option to make certain the most parsimonious tree was found.

이론/모형

  • Sequence data were aligned using the multiple alignment program Clustal W [51] and determined by parsimony and distances methods incorporated in PHYLIP (Phylogeny Inference Package) ver. 3.5c [13] as a subprogram NEIGHBOR. PHYLIP was used dinoflagellates such as Protoperidinium thulesense AB261522, Noctiluca scintillans DQ388461, Gyrodinium aureolum D-97z Dinopkysis acuminate AJ506972, D.
  • Distance matrix was analyzed by subprogram NEIGHBOR in PHYLIP with algorithms based on Saitou and Nefs NJ method [41], All nucleotide substituions were equally wighted and unordered alignment gaps were treated as missing information. Reliability of the tree was constructed using subprogram CONSENSE in PHYLIP after pairwise sequence distances were estimated by Kimura's two-parameter method, which attempts to correct observed dissimilarities for multiple substitutions in sequences evolving with a transition bias.
  • Phylogram was constructed by inferring from nucleotide sequences of partial SSU region. The tree was obtained using subprogram NEIHGBOR in PHYLIP with the option of Kimura's two-parameter method. The tree was rooted using Microcystis aeruginosa FC-070.
  • Phylogram was constructed by inferring from nucleotide sequences of partial SSU resion. The tree was obtained using subprogram NEIGBOR in PHYLIP with the option of Kimura's two-parameter. The topology represents the consensus tree from a heuristic search yielding two equally most parsimonious.
본문요약 정보가 도움이 되었나요?

참고문헌 (58)

  1. Anderson, D. M. 1990. Toxin variability in Alexandrium species. pp. 41-51, In Graneli, E., B. Sundstrom, B. Edler and D. M. Anderson (eds.), Toxic marine phytoplankton, Elsevier, New York. 

  2. Asahida, T., T. Kobayashi, K. Saitoh and I. Nakayama. 1996. Tissue preservation and total DNA extraction from fish stored at ambient temperature using buffers containing high concentration of urea. Fish Sci. 62, 727-730. 

  3. Cachon, J., T. Berman and N. Cohen. 1987. Parasitic dinoflagellates. pp. 571-610, In Taylor, F. J. R. (ed.), The biology of Dinoflagellates, Blackwell Scientific Publications, Oxford. 

  4. Cho, E. S., C. S. Kim, S. G. Lee and Y. G. Chung. 1999. Binding of alcian blue applied to harmful microalgae from Korean coastal waters. Bull. Nat. Fish. Res. Dev. Agency 55, 133-138. 

  5. Cho, E. S., G. Y. Kim and Y. C. Cho. 2001. Molecular analysis of morphologically similar dinoflagellates Cochlodinium polykrikoides, Gyrodinium impudicum and Gymnodinium catenatum based internal transcribed spacer and 5.8S rDNA regions. Algae 16, 53-57. 

  6. Cho, E. S., G. Y. Kim, B. D. Choi, L. L. Rhodes, T. J. Kim, G. H. Kim and J. D. Lee. 2001. A comparative study of the harmful dinoflagellates Cochlodinium polykrikoides and Gyrodinium impudicum using transmission electron microscopy, fatty acid composition, carotenoid content, DNA quantification and gene sequences. Bot. Mar. 44, 57-66. 

  7. Cho, E. S., G. Y. Kim, H. S. Park, B. H. Nam and J. D. Lee. 2001. Phylogenetic relationship among several Korean coastal red tide dinoflagellates based on their rDNA internal transcribed spacer sequences. Kor. J. Life Sci. 11, 74-80 

  8. Daugbjerg, N., G. Hansen, J. Larsen and O. Moestrup. 2000. Phylogeny of some of the major genera of dinoflagellates based on ultrastructure and partial LSU rDNA sequence data, including the erection of 3 new genera of unarmoured dinoflagellates. Phycologia 38, 302-317. 

  9. de Salas, M. F., C. J. S. Bolch, L. Botes, G. Nash, S. W. Wright and G. M. Hallegraeff. 2003. Takayama gen. nov. (Gymnodiniales, Dinophyceae), a new genus of unarmored dinoflagellates with sigmoid apical grooves, incuding the description of two new specices. J. Phycol. 39, 1233-1246. 

  10. Dodge, J. D. 1984. Dinoflagellate taxonomy. pp. 17-42, In Spector, D. L. (ed.), Dinoflagellate, Academic Press, New York. 

  11. Dodge, J. D. 1989. Phylogenetic relationships of dinoflagellates and their plastids. pp. 207-227, In Green, J. C., B. S. C. Leadbeater and W. I. Diver (eds.), The chromophyte algae: problems and perspectives, The Systematics Association special volume no. 38, Clarendon Press, Oxford. 

  12. Falkowski, P. G., M. E. Katz, A. H. Knoll, A. Quigg, J. A. Raven, O. Schofield and F. J. R. Taylor. 2004. The evolution of modern eurkayotic phytoplankton. Science 305, 354-360. 

  13. Felsenstein, J. 1993. PHYLIP (Phylogeny Inference Package) version 3.5c. Department of Genetics, University of Washington, Seattle. 

  14. Fensome, R. A., F. J. R. Taylor, G. Norris, W. A. S. Sarjeant, D. I. Wharton and G. L. Williams. 1993. A classification of living and fossil dinoflagellates. pp. 351, Micropaleontological Species Publication. 

  15. Grzebyk, D., Y. Sako and B. Berland. 1998. Phylogenetic analysis of nine species of Prorocentrum (Dinophyceae) inferred from 18S ribosomal DNA sequences, morphological comparisons, and descrition of Prorocentum panamensis, sp. nov. J. Phycol. 34, 1055-1068. 

  16. Guillard, R. R. L. and J. H. Ryther. 1962. Studies of marine planktonic diatoms 1. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Can. J. Microbiol. 8, 229-239. 

  17. Hackett, J. D., L. Maranda, H. S. Yoon and D. Bhattacharya. 2003. Phylogenetic evidence for the cryptophyte origin of the plastid of Dinophysis (Dinophysiales, Dinophyceae). J. Phycol. 39, 440-448. 

  18. Hallegraeff, G. M., D. M. Anderson and A. D. Cembella. 1995. Manual on harmful marine microalgae. pp. 551, IOC Manuals and Guides No. 33. UNESCO, Paris. 

  19. Hansen, G., N. Daugbjerg and P. Henriksen. 2000. Comparative study of Gymnodinium mikimotoi and Gymnodinium aureolum, comb. Nov. (Gyrdinium aureolum) based on morphology, pigment composition, and molecular data. J. Phycol. 36, 394-410. 

  20. Hansen, P. J. 1995. Growth and grazing response of a ciliate feeding on the red tide dinoflagellate Gyrodinium aureolum in monoculture and in mixture with a nontoxic alga. Mar. Ecol. Prog. Ser. 121, 65-72. 

  21. Harper, J. T. and P. J. Keeling. 2003. Nucleus-encoded, plastid-targeted glyceraldehyde-3-phosphate dehydrogenase (GAPDH) indicates a single origin for chromalveolate plastids. Mol. Biol. Evol. 20, 1730-1735. 

  22. Hulburt, E. M. 1957. The taxonomy of unarmored Dinophyceae of shallow embayments of Cape Cod, Massachusetts. Biol. Bull. 112, 196-219. 

  23. Innis, M. A., D. H. Gelfamd, J. J. Sninsky and T. J. White. 1990. PCR protocls a guide to methods and applications. pp. 322, Academic Press. 

  24. Ishida, Y., C. H. Kim, S. Yoshihiko, H. Nobuyasu and U. Aritsume. 1993. PSP toxin production is chromosome dependent in Alexandrium spp. pp. 881-887, In Smayda, T. J. and Y. Shimizu (eds.), Toxic marine phytoplankton, Elsevier, New York. 

  25. Jeffrey, S. W. 1989. Chlorophyll c pigments and their distribution in the Chromophyte algae. pp. 13-36, In Green, J. C., B. S. C. Leadbeater and W. I. Diver (eds.), The chromophyte algae: problems and perspectives, The Systematics Association special volume no. 38, Clarendon Press, Oxford. 

  26. Jeong, H. J., J. Y. Park, J. H. Nho, M. O. Park, J. H. Ha, K. A. Seong, C. Jeng, C. N. Seong, K. Y. Lee and W. H. Yih. 2005. Feeding by red-tide dinoflagellates on the cyanobacterium Synechococcus. Aqua. Micro. Ecol. 41, 131-143. 

  27. Jeong, H. J., Y. D. Yoo, J. S. Kim, T. H. Kim, J. H. Kim, N. S. Kang and W. H. Yih. 2004. Mixotrophy in the phototrophic harmful alga Cochlodinium polykrikoides (Dinophycean): prey species, the effects of prey concentration, and grazing impact. J. Eukaryot. Microbiol. 51, 563-569. 

  28. Keeling, P. J., J. M. Archibald, N. M. Fast and J. D. Palmer. 2004. The evolution of modern eukaryotic phytoplankton. Science 306, 219-220. 

  29. Kim, C. S., S. G. Lee and H. G. Kim. 2000. Biochemical responses of fish exposed to a harmful dinoflagellate Cochlodinium polykrikoides. J. Exp. Mar. Biol. Ecol. 254, 131-141. 

  30. Kim, H. G., S. G. Lee and K. H. An. eds. 1997. Recent red tides in Korean coastal waters. pp. 280, Kudeok Publishing, Busan. 

  31. Kim, S. H., K. Y. Kim, C. H. Kim, W. S. Lee, M. Chang and J. H. Lee. 2004. Phylogenetic analysis of harmful algal bloom (HAB)-causing dinoflagellates along the Korean coasts, based on SSU rRNA gene. J. Microbiol. Biotechnol. 14, 959-966. 

  32. Kimura, M. 1980. A simple method for estimating evolutionary rate of base substitution through comparative studies of nucleotide sequences. J. Mol. Evol. 116, 111-120. 

  33. Kodama, M. 1990. Possible links between bacteria and toxin production in algal blooms. pp. 52-61, In Graneli, E., B. Sundstrom, L. Edler and D. M. Anderson (eds.), Toxic marine phytoplankton, Elsevier, Amsterdam. 

  34. Koumandou, V. L., R. E. R. Nisbet, A. C. Barbrook and C. J. Howe. 2004. Dinoflagellate chloroplasts- where have all the genes gone? Trends in Genetics 20, 261-267. 

  35. Lee, S. G., J. S. Park and H. G. Kim. 1993. Taxonomy of marine toxic flagellates occurring in the southern coastal waters of Korea. Bull. Nat. Fish. Res. Dev. Agency 48, 1-23. 

  36. Lenaers, G., L. Maroteaux, B. Michot and M. Herzog. 1989. Dinoflagellates in evolution. A molecular phylogenetic analysis of large-subunit ribosomal RNA. J. Mol. Evol. 29, 40-51. 

  37. Loeblich, A. R. 1976. Dinoflagellate evolution: speculation and evidence. J. Proto. 23, 13-28. 

  38. Loeblich. A. R. 1984. Dinoflagellate evolution. pp. 481-522, In Spector, D. L. (ed.), Dinoflagellate, Academic Press, New York. 

  39. Park, J. G.. and Y. S. Park. 1999. Comparison of the morphological characteristics and the 24S rRNA sequences of Cochlodinium polykrikoides and Gyrodinium impudicum. The Sea 4, 363-370. 

  40. Partensky, F., D. Vaulot, A. Coute and A. Sournia. 1988. Morphological and nuclear analaysis of the bloom-forming dinoflagellates Gyrodinium cf. aureolum and Gymnodinium nagasakiense. J. Phycol. 24, 408-415. 

  41. Saitou, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425. 

  42. Santos, S. R., D. J. Taylor, R. A. Kinzie, M. Hidaka, K. Sakai. and M. A. Coffroth. 2002. Molecular phylogeny of symbiotic dinoflagellates inferred from partial chloroplast large subunit (23S) rDNA sequences. Mol. Phylo. Evol. 23, 97-111. 

  43. Takayama, H. and R. Adachi. 1984. Gymnodinium nagasakiense sp. nov., a red-tide blooming dinophyte in the adjacent waters of Japan. Bull. Plank. Soc. Jpn. 31, 7-14. 

  44. Takayama, H. and K. Matsuoka. 1991. A reassessment of the specific characters of Gymnodinium mikimotoi Miyake et Kominami et Oda and Gymnodinium nagasakiense Takayama et Adachi. Bull. Plank. Soc. Jpn. 38, 53-68. 

  45. Takishita, K., K. Ishida, M. Ishikura and T. Maruyama. 2005. Phylogeny of the psbC gene, coding a photosystem II component CP43, suggests separate origins for the peridinin- and fucoxanthin derivative-containing plastids of dinoflagellates. Phycologia 44, 26-34. 

  46. Takishita, K., K. Ishida and T. Maruyama. 2004. Phylogeny of nuclear-encoded plastid-targeted GAPDA gene supports separate origins for the peridinin- and the fucoxanthin derivative-containing plastids of dinoflagellates. Protist 155, 447-458. 

  47. Takishita, K., M. Ishikura, K. Koike and T. Maruyama. 2003. Comparison of phylogenies based on nuclear-encoded SSU rDNA and plastid-encoded psbA in the symbiotic dinoflagellate genus Symbiodinium. Phycologia 42, 285-291. 

  48. Taylor, F. J. R. 1980. On dinoflagellate evolution. Biosystems 13, 65-108. 

  49. Taylor, F. J. R. 1979. Symbionticism revisited: a discussion of the evolutionary impact of intracellular symbioses. Proc. R. Soc. Lond. B. 204, 267-286. 

  50. Taylor, F. J. R. 1985. The taxonomy and relationships of red tide dinoflagellates. pp. 11-26, In Anderson, D. M., A. W. White and D. C. Baden (eds.), Toxic Dinoflagellates, Elsevier, New York. 

  51. Thomson, J. D., D. G. Higgins and T. J. Gibson. 1994. Clustal W: improving the sensitivity of progressive multiple sequences alignment through sequence weighting, positin-specific fap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680. 

  52. Yang, Z. B., H. Takayama, K. Matsuoka and I. J. Hodgkiss. 2000. Karenia digitata sp. nov. (Gymnodiniales, Dinophyceae), a new harmful algal bloom species from the coastal waters of west Japan and Hong Kong. Phycologia 39, 463-470. 

  53. Yoon, H. S., J. D. Hackett and D. Bhattacharya. 2002. A single origin of the peridinin- and fucoxanthin-containing plastids in dinoflagellates through tertiary encosymbiosis. Proc. Natl. Acad. Sci. USA 99, 11724-11729. 

  54. Yoon, H. S., J. D. Hackett, C. Ciniglia, G. Pinto and D. Bhattacharya. 2004. A molecular timeline for the origin of photosynthetic eukaryotes. Mol. Biol. Evol. 21, 809-818. 

  55. Yoon, H. S., J. D. Hackett, G. Pinto and D. Bhattacharya. 2002. The single, ancient origin of chromist plastids. Proc. Natl. Acad. Sci. USA 99, 15507-15512. 

  56. Zardoya, R., E. Costas, V. Lopez-Rodas, A. Garrido- Pertierra and J. M. Bautista. 1995. Revised dinoflagellate phylogeny inferred from molecular analysis of large-subunit ribosomal RNA gene sequences. J. Mol. Evol. 41, 637-645. 

  57. Zhang, Z., T. Cavalier-Smith and B. R. Green. 2001. A family of selfish minicircular chromosomes with jumbled chloroplast gene fragments from a dinoflagellate. Mol. Biol. Evol. 18, 1558-1565. 

  58. Zhang, Z., B. R. Green and T. Cavalier-Smith. 1999. Single gene circles in dinoflagellate chloroplast genome. Nature 400, 155-159. 

저자의 다른 논문 :

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

이 논문과 함께 이용한 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로